Transferability and interpretability of the sepsis prediction models in the intensive care unit

被引:0
作者
Qiyu Chen
Ranran Li
ChihChe Lin
Chiming Lai
Dechang Chen
Hongping Qu
Yaling Huang
Wenlian Lu
Yaoqing Tang
Lei Li
机构
[1] Fudan University,Department of Applied Mathematics, School of Mathematical Sciences
[2] Shanghai Jiaotong University School of Medicine,Department of Critical Care Medicine, Ruijin Hospital
[3] Central Academe,Shanghai Electric Group Co., Ltd.
来源
BMC Medical Informatics and Decision Making | / 22卷
关键词
Sepsis; Intensive care unit; Machine learning; Transfer learning; Prognostication; Model interpretability;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 153 条
[1]  
Cecconi M(2018)Sepsis and septic shock Lancet 392 75-87
[2]  
Evans L(2016)The third international consensus definitions for sepsis and septic shock (Sepsis-3) JAMA 315 801-810
[3]  
Levy M(2001)Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care Crit Care Med 29 1303-1310
[4]  
Rhodes A(2018)The changing paradigm of sepsis: early diagnosis, early antibiotics, early pressors, and early adjuvant treatment Crit Care Med 46 1690-1692
[5]  
Singer M(2018)Presenting symptoms independently predict mortality in septic shock: Importance of a previously unmeasured confounder Crit Care Med 46 1592-1599
[6]  
Deutschman CS(2015)A targeted real-time early warning score (TREWScore) for septic shock Sci Transl Med 7 299ra122-26
[7]  
Seymour CW(2020)Early detection of sepsis utilizing deep learning on electronic health record event sequences Artif Intell Med 104 101820-84
[8]  
Angus DC(2016)Prediction of sepsis in the intensive care unit with minimal electronic health record data: a machine learning approach JMIR Med Inform 4 e5909-34
[9]  
Linde-Zwirble WT(2018)An interpretable machine learning model for accurate prediction of sepsis in the ICU Crit Care Med 46 547-47
[10]  
Lidicker J(2019)Early recognition of sepsis with Gaussian process temporal convolutional networks and dynamic time warping Mach Learn Healthc Conf PMLR 106 2-406