Anisotropic Hardy-Lorentz spaces and their applications

被引:0
作者
Jun Liu
DaChun Yang
Wen Yuan
机构
[1] Ministry of Education,School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems
来源
Science China Mathematics | 2016年 / 59卷
关键词
Lorentz space; anisotropic Hardy-Lorentz space; expansive matrix; Calderón reproducing formula; grand maximal function; atom; molecule; Calderón-Zygmund operator; 42B35; 46E30; 42B25; 42B20;
D O I
暂无
中图分类号
学科分类号
摘要
Let p ∈ (0, 1], q ∈ (0,∞] and A be a general expansive matrix on ℝn. We introduce the anisotropic Hardy-Lorentz space HAp,q (ℝn) associated with A via the non-tangential grand maximal function and then establish its various real-variable characterizations in terms of the atomic and the molecular decompositions, the radial and the non-tangential maximal functions, and the finite atomic decompositions. All these characterizations except the ∞-atomic characterization are new even for the classical isotropic Hardy-Lorentz spaces on ℝn. As applications, we first prove that HAp,q (ℝn) is an intermediate space between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_A^{{p_1},{q_1}}\left( {{\mathbb{R}^n}} \right)$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_A^{{p_2},{q_2}}\left( {{\mathbb{R}^n}} \right)$$\end{document} with 0 < p1 < p < p2 < ∞ and q1, q, q2 ∈ (0,∞], and also between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_A^{p,{q_1}}\left( {{\mathbb{R}^n}} \right)$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_A^{p,{q_2}}\left( {{\mathbb{R}^n}} \right)$$\end{document} with p ∈ (0,∞) and 0 < q1 < q < q2 ⩽ ∞ in the real method of interpolation. We then establish a criterion on the boundedness of sublinear operators from HAp,q (ℝn) into a quasi-Banach space; moreover, we obtain the boundedness of δ-type Calderón-Zygmund operators from HAp (ℝn) to the weak Lebesgue space Lp,∞(ℝn) (or to HAp,∞ (ℝn) in the critical case, from HAp (ℝn) to Lp,q(ℝn) (or to HAp (ℝn)) with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta \in \left( {0,\frac{{In{\lambda _ - }}}{{Inb}}} \right]\;,\;p \in \left( {\frac{1}{{1 + \delta }},\;1} \right]\;and\;q \in \left( {0,\;\infty } \right]$$\end{document} and q ∈ (0,∞], as well as the boundedness of some Calderón-Zygmund operators from HAp,q (ℝn) to Lp,∞(ℝn), where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\;: \in \left| {\det \;A} \right|$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda _ - }\;: = \;\min \left\{ {\left| \lambda \right|\;:\lambda \; \in \;\sigma \left( A \right)} \right\}$$\end{document} and σ(A) denotes the set of all eigenvalues of A.
引用
收藏
页码:1669 / 1720
页数:51
相关论文
共 110 条
[1]  
Abu-Shammala W(2007)The Hardy-Lorentz spaces Hp,q(Rn) Studia Math 182 283-294
[2]  
Torchinsky A(2010)Generalized Hardy spaces Acta Math Sin Engl Ser 26 1673-1692
[3]  
Almeida A(1998)Continuity properties for linear commutators of Calderón-Zygmund operators Collect Math 49 17-31
[4]  
Caetano A M(1986)Hp continuity properties of Calderón-Zygmund-type operators J Math Anal Appl 118 63-79
[5]  
Álvarez J(1942)Locally bounded linear topological spaces Proc Imp Acad Tokyo 18 588-594
[6]  
Álvarez J(2005)Boundedness of operators on Hardy spaces via atomic decompositions Proc Amer Math Soc 133 3535-3542
[7]  
Milman M(2007)Anisotropic Triebel-Lizorkin spaces with doubling measures J Geom Anal 17 387-424
[8]  
Aoki T(2006)Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces Trans Amer Math Soc 358 1469-1510
[9]  
Bownik M(2008)Weighted anisotropic Hardy spaces and their applications in boundedness of sublinear operators Indiana Univ Math J 57 3065-3100
[10]  
Bownik M(1964)Intermediate spaces and interpolation: The complex method Studia Math 24 113-190