An Approximate Nerve Theorem

被引:0
作者
Dejan Govc
Primoz Skraba
机构
[1] Institute of Mathematics,FAMNIT
[2] Physics and Mechanics,undefined
[3] Jozef Stefan Institute,undefined
[4] University of Primorska,undefined
来源
Foundations of Computational Mathematics | 2018年 / 18卷
关键词
Persistence modules; Mayer–Vietoris; Spectral sequences; Approximation; Primary 55; 55T; 18;
D O I
暂无
中图分类号
学科分类号
摘要
The nerve theorem relates the topological type of a suitably nice space with the nerve of a good cover of that space. It has many variants, such as to consider acyclic covers and numerous applications in topology including applied and computational topology. The goal of this paper is to relax the notion of a good cover to an approximately good cover, or more precisely, we introduce the notion of an ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-acyclic cover. We use persistent homology to make this rigorous and prove tight bounds between the persistent homology of a space endowed with a function and the persistent homology of the nerve of an ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-acyclic cover of the space. Our approximations are stated in terms of interleaving distance between persistence modules. Using the Mayer–Vietoris spectral sequence, we prove upper bounds on the interleaving distance between the persistence module of the underlying space and the persistence module of the nerve of the cover. To prove the best possible bound, we must introduce special cases of interleavings between persistence modules called left and right interleavings. Finally, we provide examples which achieve the bound proving the lower bound and tightness of the result.
引用
收藏
页码:1245 / 1297
页数:52
相关论文
共 32 条
  • [1] Agarwal Pankaj K(2006)Extreme elevation on a 2-manifold Discrete and Computational Geometry 36 553-572
  • [2] Edelsbrunner Herbert(1928)Über den allgemeinen dimensionsbegriff und seine beziehungen zur elementaren geometrischen anschauung Mathematische Annalen 98 617-635
  • [3] Harer John(2015)The topology of probability distributions on manifolds Probability Theory and Related Fields 161 651-686
  • [4] Wang Yusu(2014)A Scott. Categorification of persistent homology Discrete and Computational Geometry 51 600-627
  • [5] Alexandroff Paul(2009)Topology and data Bulletin of the American Mathematical Society 46 255-308
  • [6] Bobrowski Omer(2009)A sampling theory for compact sets in euclidean space Discrete & Computational Geometry 41 461-479
  • [7] Mukherjee Sayan(2016)The observable structure of persistence modules Homology, Homotopy and Applications 18 247-265
  • [8] Carlsson Gunnar(2011)Scalar field analysis over point cloud data Discrete and Computational Geometry 46 743-775
  • [9] Chazal Frédéric(2007)Stability of persistence diagrams Discrete and Computational Geometry 37 103-120
  • [10] Cohen-Steiner David(2015)Graph induced complex on point data Computational Geometry 48 575-588