Operators on Differential Form Spaces for Riemann Surfaces

被引:0
作者
Guang Fu Cao
Xiao Feng Wang
机构
[1] Guangzhou University,Department of Mathematics
来源
Acta Mathematica Sinica, English Series | 2007年 / 23卷
关键词
Riemann surface; Composition operator; Toeplitz operator; 46L80; 47B33; 47B35;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, a problem of Ioana Mihaila is negatively answered on the invertibility of composition operators on Riemann surfaces, and it is proved that the composition operator Cp is Fredholm if and only if it is invertible if and only if p is invertible for some special cases. In addition, the Toeplitz operators on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Lambda _{2,a}^1 (M) $$ \end{document}for Riemann surface M are defined and some properties of these operators are discussed.
引用
收藏
页码:925 / 934
页数:9
相关论文
共 12 条
[1]  
Mihaila undefined(1998)undefined Contemporary Mathematics 213 145-undefined
[2]  
Cima undefined(1974)undefined Indiana Univ. Math. 24 215-undefined
[3]  
Hatori undefined(1994)undefined Integral Equations and Operator Theory 18 202-undefined
[4]  
Cao undefined(1997)undefined Acta Mathematica Sinica, New Series 13 281-undefined
[5]  
Bourdon undefined(1990)undefined Integral Equations and Operators Theory 13 607-undefined
[6]  
Singh undefined(1987)undefined Acta Sci. Math. 51 461-undefined
[7]  
Takagi undefined(1993)undefined Equat. Oper. Th. 16 267-undefined
[8]  
Cao undefined(2001)undefined Northeast, Math. J. 4 476-undefined
[9]  
Axler undefined(1982)undefined Can. J. Math. XXXIV 466-undefined
[10]  
Berger undefined(1994)undefined Amer. J. Math. 116 563-undefined