Improving exposure assessment in environmental epidemiology: Application of spatio-temporal visualization tools

被引:7
作者
Meliker J.R. [1 ]
Slotnick M.J. [1 ]
AvRuskin G.A. [2 ]
Kaufmann A. [2 ]
Jacquez G.M. [2 ]
Nriagu J.O. [1 ]
机构
[1] Dept. of Environ. Health Sciences, School of Public Health, University of Michigan, Ann Arbor
[2] BioMedware Inc., Ann Arbor, MI 48104
关键词
Arsenic; Epidemiology; Exposure; GIS; STIS;
D O I
10.1007/s10109-005-0149-4
中图分类号
学科分类号
摘要
A thorough assessment of human exposure to environmental agents should incorporate mobility patterns and temporal changes in human behaviors and concentrations of contaminants; yet the temporal dimension is often under-emphasized in exposure assessment endeavors, due in part to insufficient tools for visualizing and examining temporal datasets. Spatio-temporal visualization tools are valuable for integrating a temporal component, thus allowing for examination of continuous exposure histories in environmental epidemiologic investigations. An application of these tools to a bladder cancer case-control study in Michigan illustrates continuous exposure life-lines and maps that display smooth, continuous changes over time. Preliminary results suggest increased risk of bladder cancer from combined exposure to arsenic in drinking water (>25 μ g/day) and heavy smoking (>30 cigarettes/day) in the 1970s and 1980s, and a possible cancer cluster around automotive, paint, and organic chemical industries in the early 1970s. These tools have broad application for examining spatially- and temporally-specific relationships between exposures to environmental risk factors and disease. © Springer-Verlag Berlin Heidelberg 2005.
引用
收藏
页码:49 / 66
页数:17
相关论文
共 24 条
[1]  
Andrienko N., Andrienko G., Gatalsky P., Exploratory spatio-temporal visualization: An analytical review, Journal of Visual Languages and Computing, 14, pp. 503-541, (2003)
[2]  
Bates M.N., Smith A.H., Cantor K.P., Case-Control Study of Bladder-Cancer and Arsenic in Drinking-Water, American Journal of Epidemiology, 141, pp. 523-530, (1995)
[3]  
Beaubroef T., Breckenridge J., Real-world issues and applications for real-time geographic information systems (RT-GIS), Journal of Navigation, 53, pp. 124-131, (2000)
[4]  
Brauer M., Hoek G., Van Vliet P., Meliefste K., Fischer P., Gehring U., Heinrich J., Cyrys J., Bellander T., Lewne M., Brunekreef B., Estimating Long-Term Average Particulate Air Pollution Concentrations: Application of Traffic Indicators and Geographic Information Systems, Epidemiology, 14, pp. 228-239, (2003)
[5]  
Cantor K.P., Invited Commentary: Arsenic and Cancer of the Urinary Tract, American Journal of Epidemiology, 153, pp. 419-421, (2001)
[6]  
Charles L.E., Loomis D., Shy C.M., Newman B., Millikan R., Nylander-French L.A., Couper D., Electromagnetic fields, polychlorinated biphenyls, and prostate cance mortality in electric utility workers, American Journal of Epidemiology, 157, pp. 683-691, (2003)
[7]  
Chittaro L., Combi C., Trapasso G., Data mining on temporal data: A visual approach and its clinical application to hemodialysis, Journal of Visual Languages and Computing, 14, pp. 591-620, (2003)
[8]  
Dragicevic S., Marceau D.J., A fuzzy set approach for modeling time in GIS, International Journal of Geographic Information Science, 14, pp. 225-245, (2000)
[9]  
Gammon M.D., Wolff M.S., Neugut A.I., Eng S.M., Teitelbaum S.L., Britton J.A., Terry M.B., Levin B., Stellman S.D., Kabat G.C., Hatch M., Senie R., Berkowitz G., Bradlow H.L., Garbowski G., Maffeo C., Montalvan P., Kemeny M., Citron M., Schanbel F., Schuss A., Hajdu S., Vinceguerra V., Niguidula N., Ireland K., Santella R.M., Environmental Toxins and Breast Cancer on Long Island. II. Organochlorine Compound Levels in Blood, Cancer Epidemiology Biomarkers & Prevention, 11, pp. 686-697, (2002)
[10]  
Hornsby K., Egenhofer M., Modeling moving objects over multiple granularities, Annals of Mathematics and Artificial Intelligence, 36, pp. 177-194, (2002)