Structural and electrical properties of Gd-doped BiFeO3:BaTiO3 (3:2) multiferroic ceramic materials

被引:0
作者
B. S. Kar
M. N. Goswami
P. C. Jana
P. S. Das
机构
[1] Vidyasagar University,Department of Physics and Techno Physics
[2] Midnapore College (Autonomous),Department of Physics
[3] Panskura Banamali College (Autonomous),Department of Physics
来源
Journal of Materials Science: Materials in Electronics | 2019年 / 30卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Gadolinium doped BiFeO3:BaTiO3 (3:2) polycrystalline multiferroic ceramics have been prepared by high-temperature solid state reaction technique. X-ray diffraction (XRD) analysis at room temperature of the prepared materials confirmed the formation of the compounds with rhombohedral crystal structure. The average particle size of as prepared samples have been found in the range of 35 nm to 55 nm for different doping concentrations. The average grain size of as prepared samples are less than 100 nm which is confirmed from SEM study. The SEM of annealed compounds showed the uniform distribution of grains and the formation of dense ceramic with average grain size in the order of 4 µm. Dielectric studies of the materials reveals that the dielectric constant (εr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon _r}$$\end{document}) and tangent loss (tan δ) decreases with doping concentrations at room temperature. The variation of εr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon _r}$$\end{document} and tan δ with temperature was explained on the basis of Maxwell–Wagner mechanism. The values of grain resistance (Rb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R_b}$$\end{document}) and grain capacitance (Cb) were obtained from Nyquist plots for the different doping concentrations at 300 °C. The activation energy (Ea\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E_a}$$\end{document}) was calculated from the curve of frequency dependent ac conductivity (σac\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma _{ac}}$$\end{document}) within the range 0.19 eV to 0.45 eV. The remnant polarization of the samples (0.53 µC/cm2) was measured from polarization versus electric field (P–E) hysteresis curves. The ferromagnetic behaviour of the Gd-doped BiFeO3:BaTiO3 (3:2) sample has been studied by SQUID for the lowest doping concentration. The value of remnant magnetization was found 0.0235 emu/g at room temperature.
引用
收藏
页码:2154 / 2165
页数:11
相关论文
共 50 条
[31]   Fabrication and Ferroelectric Properties of BiFeO3/BaTiO3 Heterostructures [J].
Aleszkiewicz, M. ;
Dybko, K. ;
Dynowska, E. ;
Dluzewski, P. ;
Przyslupski, P. .
ACTA PHYSICA POLONICA A, 2016, 130 (02) :511-515
[32]   Magnetodielectric Properties of Cr3+ Ions Doped BaTiO3 Multiferroic Ceramic [J].
Kumar, Amit ;
Kumar, Sonu ;
Prajapat, Manoj ;
Prakash, C. .
PROCEEDINGS OF THE 59TH DAE SOLID STATE PHYSICS SYMPOSIUM 2014 (SOLID STATE PHYSICS), 2015, 1665
[33]   Structural, Electrical and Optical Properties of Fe Doped BaTiO3 Perovskite Ceramic [J].
Sengunthar, Poornima S. ;
Pandya, Rutvi J. ;
Joshi, U. S. .
FUNCTIONAL OXIDES AND NANOMATERIALS, 2017, 1837
[34]   Influence of Mn doping on structural, electrical and magnetic properties of (0.90)BiFeO3–(0.10)BaTiO3 composite [J].
Mohit Sahni ;
Naresh Kumar ;
Sushant Singh ;
Aashish Jha ;
S. Chaubey ;
Manoj Kumar ;
M. K. Sharma .
Journal of Materials Science: Materials in Electronics, 2014, 25 :2199-2209
[35]   Structural, dielectric, and multiferroic properties of Ta2O5-modified BiFeO3–BaTiO3–LaFeO3 solid solutions [J].
Xiaoyan Zhang ;
Jinhua Yan ;
Rongmei Shi ;
Zhi Wang ;
Min Zhang ;
Qiang Du ;
Xiwei Qi .
Journal of Materials Science: Materials in Electronics, 2020, 31 :1502-1508
[36]   Structural, electrical and magnetic properties of multiferroic BiFeO3–SrTiO3 composites [J].
Tahir Murtaza ;
Javid Ali ;
Mohd Shahid Khan ;
K. Asokan .
Journal of Materials Science: Materials in Electronics, 2018, 29 :2110-2119
[37]   Structural and Magnetic Properties of Cr Doped BiFeO3 Multiferroic Nanoparticles [J].
Sinha, A. K. ;
Bhushan, B. ;
Rout, D. ;
Sharma, R. K. ;
Gupta, J. ;
Sen, S. ;
Mukadam, M. D. ;
Meena, S. S. ;
Yusuf, S. M. .
61ST DAE-SOLID STATE PHYSICS SYMPOSIUM, 2017, 1832
[38]   Structural and Optical Properties of Pr Doped BiFeO3 Multiferroic Ceramics [J].
Singh, Vikash ;
Subhash ;
Dwivedi, R. K. ;
Kumar, Manoj .
SOLID STATE PHYSICS, VOL 57, 2013, 1512 :462-463
[39]   Structural, dielectric and ferroelectric properties of lead free Gd-modified BiFeO3–BaTiO3 solid solution [J].
C. Behera ;
A. K. Pattanaik .
Journal of Materials Science: Materials in Electronics, 2019, 30 :5470-5477
[40]   Structural, magnetic, and electrical properties of Gd-doped BiFeO 3 nanoparticles with reduced particle size [J].
Lotey, Gurmeet Singh ;
Verma, N.K. .
Journal of Nanoparticle Research, 2012, 14 (02)