Deep learning: systematic review, models, challenges, and research directions

被引:0
|
作者
Tala Talaei Khoei
Hadjar Ould Slimane
Naima Kaabouch
机构
[1] University of North Dakota,School of Electrical Engineering and Computer Science
来源
Neural Computing and Applications | 2023年 / 35卷
关键词
Artificial intelligence; Neural networks; Deep learning; Supervised learning; Unsupervised learning; Reinforcement learning; Online learning; Federated learning; Transfer learning;
D O I
暂无
中图分类号
学科分类号
摘要
The current development in deep learning is witnessing an exponential transition into automation applications. This automation transition can provide a promising framework for higher performance and lower complexity. This ongoing transition undergoes several rapid changes, resulting in the processing of the data by several studies, while it may lead to time-consuming and costly models. Thus, to address these challenges, several studies have been conducted to investigate deep learning techniques; however, they mostly focused on specific learning approaches, such as supervised deep learning. In addition, these studies did not comprehensively investigate other deep learning techniques, such as deep unsupervised and deep reinforcement learning techniques. Moreover, the majority of these studies neglect to discuss some main methodologies in deep learning, such as transfer learning, federated learning, and online learning. Therefore, motivated by the limitations of the existing studies, this study summarizes the deep learning techniques into supervised, unsupervised, reinforcement, and hybrid learning-based models. In addition to address each category, a brief description of these categories and their models is provided. Some of the critical topics in deep learning, namely, transfer, federated, and online learning models, are explored and discussed in detail. Finally, challenges and future directions are outlined to provide wider outlooks for future researchers.
引用
收藏
页码:23103 / 23124
页数:21
相关论文
共 50 条
  • [1] Deep learning: systematic review, models, challenges, and research directions
    Talaei Khoei, Tala
    Ould Slimane, Hadjar
    Kaabouch, Naima
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (31) : 23103 - 23124
  • [2] Machine Learning: Models, Challenges, and Research Directions
    Khoei, Tala Talaei
    Kaabouch, Naima
    FUTURE INTERNET, 2023, 15 (10)
  • [3] A Systematic Review of Using Deep Learning in Aphasia: Challenges and Future Directions
    Wang, Yin
    Cheng, Weibin
    Sufi, Fahim
    Fang, Qiang
    Mahmoud, Seedahmed S.
    COMPUTERS, 2024, 13 (05)
  • [4] Deep learning techniques for solar tracking systems: A systematic literature review, research challenges, and open research directions
    Phiri, Musa
    Mulenga, Mwenge
    Zimba, Aaron
    Eke, Christopher Ifeanyi
    SOLAR ENERGY, 2023, 262
  • [5] A Current Review of Machine Learning and Deep Learning Models in Oral Cancer Diagnosis: Recent Technologies, Open Challenges, and Future Research Directions
    Dixit, Shriniket
    Kumar, Anant
    Srinivasan, Kathiravan
    DIAGNOSTICS, 2023, 13 (07)
  • [6] Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
    Laith Alzubaidi
    Jinglan Zhang
    Amjad J. Humaidi
    Ayad Al-Dujaili
    Ye Duan
    Omran Al-Shamma
    J. Santamaría
    Mohammed A. Fadhel
    Muthana Al-Amidie
    Laith Farhan
    Journal of Big Data, 8
  • [7] Deep multiagent reinforcement learning: challenges and directions
    Wong, Annie
    Back, Thomas
    Kononova, Anna, V
    Plaat, Aske
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (06) : 5023 - 5056
  • [8] Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
    Alzubaidi, Laith
    Zhang, Jinglan
    Humaidi, Amjad J.
    Al-Dujaili, Ayad
    Duan, Ye
    Al-Shamma, Omran
    Santamaria, J.
    Fadhel, Mohammed A.
    Al-Amidie, Muthana
    Farhan, Laith
    JOURNAL OF BIG DATA, 2021, 8 (01)
  • [9] Deep Learning for Diabetic Retinopathy Analysis: A Review, Research Challenges, and Future Directions
    Nadeem, Muhammad Waqas
    Goh, Hock Guan
    Hussain, Muzammil
    Liew, Soung-Yue
    Andonovic, Ivan
    Khan, Muhammad Adnan
    SENSORS, 2022, 22 (18)
  • [10] Systematic Review of Deep Learning and Machine Learning Models in Biofuels Research
    Ardabili, Sina
    Mosavi, Amir
    Varkonyi-Koczy, Annamaria R.
    ENGINEERING FOR SUSTAINABLE FUTURE, 2020, 101 : 19 - 32