Morphology and Crystallinity of Electrodeposited Copper Particles on Nickel Controlled by Induction Heating

被引:2
作者
Devillers S. [1 ]
Bonte J. [1 ]
Delhalle J. [1 ]
Mekhalif Z. [1 ]
机构
[1] Laboratory of Chemistry and Electrochemistry of Surfaces (CES), University of Namur, Rue de Bruxelles, 61, Namur
关键词
Copper; Electrodeposition; Induction heating; Nanoparticles; Nickel;
D O I
10.1007/s42250-018-0020-x
中图分类号
学科分类号
摘要
Templates and capping agents are usually used for the synthesis of NPs with well-defined shape and size. However, the presence of these agents at the surface of the formed NPs may have undesirable effects for some applications. Deposition parameters can also be used to control the morphology and crystallinity of the obtained deposits. Temperature and its gradient are known to play a significant role on the electrodeposition kinetics and thus on the resulting deposit morphology. We have shown in previously published exploratory studies that a mass transport enhancement such as the one obtained in electrochemical systems with heated electrodes can greatly influence the growth kinetics regarding the diffusion limitation aspects. In these works, we compared the morphology of copper particles electrodeposited in two temperature-equivalent conditions i.e. a conventional heating (CH) of the solution (isothermal situation) and an induction heating (IH) of the nickel electrode (non-isothermal situation). The aim of the present work is to further investigate the mechanistic aspects of the galvanostatic electrodeposition of Cu particles on Ni under IH by means of in situ potential and surface temperature measurements correlated with SEM observations of the deposited Cu particles. © 2018, Springer Nature Switzerland AG.
引用
收藏
页码:155 / 165
页数:10
相关论文
共 65 条
[1]  
Ikari S., Kashiwade H., Matsuoka T., Hirayama T., Ishida S., Kato K., Surf. Coat. Tech., 202, (2008)
[2]  
Nakatsuji H., Hu Z., Int. J. Quantum Chem., 77, (2000)
[3]  
Singh P., Katyal A., Kalra R., Chandra R., Catal Commun., 9, (2008)
[4]  
de Jongh P.E., Vanmaekelbergh D., Kelly J.J., Chem. Commun., 12, (1999)
[5]  
Xu H., Wang W., Zhu W., J. Phys. Chem. B, 110, (2006)
[6]  
Bao H., Zhang W., Shang D., Hua Q., Ma Y., Jiang Z., Yang J., Huang W., J. Phys. Chem. C, 114, (2010)
[7]  
Tamaki J., Shimanoe K., Yamada Y., Yamamoto Y., Miura N., Yamazoe N., Sensor Actuat. B-Chem., 49, (1998)
[8]  
Ishihara T., Higuchi M., Takagi T., Ito M., Nishiguchi H., Takita Y., J. Mater. Chem., 8, (1998)
[9]  
Ren G., Hu D., Cheng E.W.C., Vargas-Reus M.A., Reip P., Allaker R.P., Int. J. Antimicrob. Ag., 33, (2009)
[10]  
Guo L., Searson P.C., Electrochim Acta, 55, (2010)