On the boundedness of periodic pseudo-differential operators

被引:0
作者
Duván Cardona
机构
[1] Universidad de Los Andes,Department of Mathematics
来源
Monatshefte für Mathematik | 2018年 / 185卷
关键词
-spaces; Pseudo-differential operators; Torus; Fourier series; Microlocal analysis; Primary 58J40; Secondary 35S05; 42B05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we investigate the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-boundedness of certain classes of periodic pseudo-differential operators. The operators considered arise from the study of symbols on Tn×Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}^n\times {\mathbb {Z}}^n$$\end{document} with limited regularity.
引用
收藏
页码:189 / 206
页数:17
相关论文
共 50 条
[41]   On the L2-boundedness of pseudo-differential operators and their commutators with symbols in α-modulation spaces [J].
Kobayashi, Masaharu ;
Sugimoto, Mitsuru ;
Tomita, Naohito .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 350 (01) :157-169
[42]   The endpoint estimates for pseudo-differential operators [J].
Wu, Guoning ;
Yang, Jie .
ARCHIV DER MATHEMATIK, 2025, 124 (06) :675-681
[43]   Lie Bialgebroid of Pseudo-differential Operators [J].
Anahita Eslami Rad .
Journal of Nonlinear Mathematical Physics, 2022, 29 :869-895
[44]   Pseudo-Differential Operators with Point Interactions [J].
S. ALBEVERIO ;
P. KURASOV .
Letters in Mathematical Physics, 1997, 41 :79-92
[45]   PSEUDO-DIFFERENTIAL OPERATORS FOR WEYL TRANSFORMS [J].
Duan, Xiaoxi ;
Wong, M. W. .
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2013, 75 (04) :3-12
[46]   Pseudo-differential operators with point interactions [J].
Albeverio, S ;
Kurasov, P .
LETTERS IN MATHEMATICAL PHYSICS, 1997, 41 (01) :79-92
[47]   On the Sobolev Boundedness Results of the Product of Pseudo-differential Operators Involving a Couple of Fractional Hankel Transforms [J].
Akhilesh PRASAD ;
Kanailal MAHATO .
Acta Mathematica Sinica,English Series, 2018, (02) :221-232
[48]   Pseudo-differential operators in a Gelfand-Shilov setting [J].
Cappiello, Marco ;
Toft, Joachim .
MATHEMATISCHE NACHRICHTEN, 2017, 290 (5-6) :738-755
[49]   Global Hypoellipticity for a Class of Pseudo-differential Operators on the Torus [J].
Silva, Fernando de Avila ;
Gonzalez, Rafael Borro ;
Kirilov, Alexandre ;
de Medeira, Cleber .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (04) :1717-1758
[50]   Ellipticity of Fredholm Pseudo-Differential Operators on Lp(Rn) [J].
Dasgupta, Aparajita .
NEW DEVELOPMENTS IN PSEUDO-DIFFERENTIAL OPERATORS, 2009, 189 :107-116