Improved Recordings of the Optical Intrinsic Signals in the Neonatal Rat Barrel Cortex

被引:3
作者
Sintsov M. [1 ]
Suchkov D. [1 ]
Khazipov R. [1 ,2 ,3 ]
Minlebaev M. [1 ,2 ,3 ]
机构
[1] Laboratory of Neurobiology, Kazan Federal University, 17 Kremlevskaya str., Kazan
[2] INMED - INSERM U901, 163 Avenue de Luminy, Marseille
[3] Aix-Marseille University, Marseille
基金
俄罗斯科学基金会;
关键词
Barrel cortex; Development; Functional imaging; Intrinsic signal; Somatosensory cortex;
D O I
10.1007/s12668-016-0359-x
中图分类号
学科分类号
摘要
Optical imaging of intrinsic signals (OIS) is widely used for the functional cortical mapping in vivo. Recently, OIS is also implemented for the functional mapping in the neonatal rat barrel cortex. However, the OIS is characterized by relatively low signal to noise ratio (SNR). Here, we determined parameters for post hoc data analysis that allowed improving OIS mapping and analysis in the developing rat barrel cortex in vivo. We found that application of spatial Gaussian filtering with sigma of 1 px increases the OIS SNR almost twofold. Additional light correction and low-pass temporal filtering with 1 s window size resulted in further improvement of the OIS SNR. Thus, the proposed digital filtering can substantially improve quality of the OIS recordings in the developing somatosensory cortex. © 2016, Springer Science+Business Media New York.
引用
收藏
页码:333 / 337
页数:4
相关论文
共 15 条
  • [1] Grinvald A., Lieke E., Frostig R.D., Gilbert C.D., Wiesel T.N., Functional architecture of cortex revealed by optical imaging of intrinsic signals, Nature, 324, pp. 361-364, (1986)
  • [2] Bonhoeffer T., Grinvald A., Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns, Nature, 353, pp. 429-431, (1991)
  • [3] Rubin B.D., Katz L.C., Optical imaging of odorant representations in the mammalian olfactory bulb, Neuron, 23, pp. 499-511, (1999)
  • [4] Bakin J.S., Kwon M.C., Masino S.A., Weinberger N.M., Frostig R.D., Suprathreshold auditory cortex activation visualized by intrinsic signal optical imaging, Cerebral Cortex, 6, pp. 120-130, (1996)
  • [5] Sirovich L., Everson R., Kaplan E., Knight B.W., O'Brien E., Orbach D., Modeling the functional organization of the visual cortex, Physical D, 96, pp. 355-366, (1996)
  • [6] Everson R.M., Prashanth A.K., Gabbay M., Knight B.W., Sirovich L., Kaplan E., Representation of spatial frequency and orientation in the visual cortex, Proceedings of the National Academy of Sciences of the United States of America, 95, pp. 8334-8338, (1998)
  • [7] Gabbay M., Brennan C., Kaplan E., Sirovich L., A principal components-based method for the detection of neuronal activity maps: application to optical imaging, NeuroImage, 11, pp. 313-325, (2000)
  • [8] Mahmoudzadeh M., Dehaene-Lambertz G., Fournier M., Kongolo G., Goudjil S., Dubois J., Et al., Syllabic discrimination in premature human infants prior to complete formation of cortical layers, Proceedings of the National Academy of Sciences of the United States of America, 110, pp. 4846-4851, (2013)
  • [9] Minlebaev M., Colonnese M., Tsintsadze T., Sirota A., Khazipov R., Early gamma oscillations synchronize developing thalamus and cortex, Science, 334, pp. 226-229, (2011)
  • [10] Khazipov R., Zaynutdinova D., Ogievetsky E., Valeeva G., Mitrukhina O., Manent J.B., Et al., Atlas of the postnatal rat brain in stereotaxic coordinates, Frontiers neuroanatomy, 9, (2015)