Hardy and Carleson Measure Spaces Associated with Operators on Spaces of Homogeneous Type

被引:1
|
作者
Yanchang Han
Yongsheng Han
Ji Li
Chaoqiang Tan
机构
[1] South China Normal University,School of Mathematic Sciences
[2] Auburn University,Department of Mathematics
[3] Macquarie University,Department of Mathematics
[4] Shantou University,Department of Mathematics
来源
Potential Analysis | 2018年 / 49卷
关键词
Metric measure space; Hardy space; Atom; Molecule; Davies-Gaffney condition; Primary 42B35; Secondary 43A85, 42B25, 42B30, 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
Let (X, d, μ) be a metric measure space with doubling property. The Hardy spaces associated with operators L were introduced and studied by many authors. All these spaces, however, were first defined by L2(X) functions and finally the Hardy spaces were formally defined by the closure of these subspaces of L2(X) with respect to Hardy spaces norms. A natural and interesting question in this context is to characterize the closure. The purpose of this paper is to answer this question. More precisely, we will introduce CMOLp(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${CMO}_{L}^{p}(X)$\end{document}, the Carleson measure spaces associated with operators L, and characterize the Hardy spaces associated with operators L via (CMOLp(X))′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$({CMO}_{L}^{p}(X))'$\end{document}, the distributions of CMOLp(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${CMO}_{L}^{p}(X)$\end{document}.
引用
收藏
页码:247 / 265
页数:18
相关论文
共 50 条
  • [41] Boundedness of Hausdorff operators on Lebesgue spaces and Hardy spaces
    Jiecheng Chen
    Jiawei Dai
    Dashan Fan
    Xiangrong Zhu
    Science China(Mathematics), 2018, 61 (09) : 109 - 126
  • [42] Boundedness of Hausdorff operators on Lebesgue spaces and Hardy spaces
    Chen, Jiecheng
    Dai, Jiawei
    Fan, Dashan
    Zhu, Xiangrong
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (09) : 1647 - 1664
  • [43] Bilinear decompositions for products of Hardy and Lipschitz spaces on spaces of homogeneous type
    Liu, Liguang
    Yang, Dachun
    Yuan, Wen
    DISSERTATIONES MATHEMATICAE, 2018, (533) : 1 - 93
  • [44] Orlicz-Hardy spaces associated with operators
    RenJin Jiang
    DaChun Yang
    Yuan Zhou
    Science in China Series A: Mathematics, 2009, 52
  • [45] Hardy spaces associated with a pair of commuting operators
    Cao, Jun
    Fu, Zunwei
    Jiang, Renjin
    Yang, Dachun
    FORUM MATHEMATICUM, 2015, 27 (05) : 2775 - 2824
  • [46] Volterra integral operators from Dirichlet type spaces into Hardy spaces
    Shen, Conghui
    Li, Songxiao
    RICERCHE DI MATEMATICA, 2023, 72 (01) : 107 - 118
  • [47] Volterra integral operators from Dirichlet type spaces into Hardy spaces
    Conghui Shen
    Songxiao Li
    Ricerche di Matematica, 2023, 72 : 107 - 118
  • [48] Orlicz-Hardy spaces associated with operators
    JIANG RenJin
    Laboratory of Mathematics and Complex Syst- ems
    Science China Mathematics, 2009, (05) : 1042 - 1080
  • [49] Orlicz-Hardy spaces associated with operators
    Jiang RenJin
    Yang DaChun
    Zhou Yuan
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (05): : 1042 - 1080
  • [50] Volterra type integration operators from Bergman spaces to Hardy spaces
    Miihkinen, Santeri
    Pau, Jordi
    Perala, Antti
    Wang, Maofa
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (04)