Hardy and Carleson Measure Spaces Associated with Operators on Spaces of Homogeneous Type

被引:1
|
作者
Yanchang Han
Yongsheng Han
Ji Li
Chaoqiang Tan
机构
[1] South China Normal University,School of Mathematic Sciences
[2] Auburn University,Department of Mathematics
[3] Macquarie University,Department of Mathematics
[4] Shantou University,Department of Mathematics
来源
Potential Analysis | 2018年 / 49卷
关键词
Metric measure space; Hardy space; Atom; Molecule; Davies-Gaffney condition; Primary 42B35; Secondary 43A85, 42B25, 42B30, 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
Let (X, d, μ) be a metric measure space with doubling property. The Hardy spaces associated with operators L were introduced and studied by many authors. All these spaces, however, were first defined by L2(X) functions and finally the Hardy spaces were formally defined by the closure of these subspaces of L2(X) with respect to Hardy spaces norms. A natural and interesting question in this context is to characterize the closure. The purpose of this paper is to answer this question. More precisely, we will introduce CMOLp(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${CMO}_{L}^{p}(X)$\end{document}, the Carleson measure spaces associated with operators L, and characterize the Hardy spaces associated with operators L via (CMOLp(X))′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$({CMO}_{L}^{p}(X))'$\end{document}, the distributions of CMOLp(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${CMO}_{L}^{p}(X)$\end{document}.
引用
收藏
页码:247 / 265
页数:18
相关论文
共 50 条
  • [31] Hardy spaces associated to generalized Hardy operators and applications
    The Anh Bui
    Georges Nader
    Nonlinear Differential Equations and Applications NoDEA, 2022, 29
  • [32] Hardy Spaces Associated with Non-negative Self-adjoint Operators and Ball Quasi-Banach Function Spaces on Doubling Metric Measure Spaces and Their Applications
    Lin, Xiaosheng
    Yang, Dachun
    Yang, Sibei
    Yuan, Wen
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2024,
  • [33] AN ATOMIC DECOMPOSITION FOR HARDY SPACES ASSOCIATED TO SCHRODINGER OPERATORS
    Song, Liang
    Tan, Chaoqiang
    Yan, Lixin
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 91 (01) : 125 - 144
  • [34] Volterra integration operators from Hardy-type tent spaces to Hardy spaces
    Rong Hu
    Chuan Qin
    Lv Zhou
    Journal of Inequalities and Applications, 2022
  • [35] Weak Hardy Spaces Associated with Ball Quasi-Banach Function Spaces on Spaces of Homogeneous Type: Decompositions, Real Interpolation, and Calderon-Zygmund Operators
    Sun, Jingsong
    Yang, Dachun
    Yuan, Wen
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (07)
  • [36] Volterra integration operators from Hardy-type tent spaces to Hardy spaces
    Hu, Rong
    Qin, Chuan
    Zhou, Lv
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [37] Weak Hardy Spaces Associated with Ball Quasi-Banach Function Spaces on Spaces of Homogeneous Type: Decompositions, Real Interpolation, and Calderón–Zygmund Operators
    Jingsong Sun
    Dachun Yang
    Wen Yuan
    The Journal of Geometric Analysis, 2022, 32
  • [38] Geometry and Hardy spaces on spaces of homogeneous type in the sense of Coifman and Weiss
    YanChang Han
    YongSheng Han
    Ji Li
    Science China Mathematics, 2017, 60 : 2199 - 2218
  • [39] Geometry and Hardy spaces on spaces of homogeneous type in the sense of Coifman and Weiss
    Han YanChang
    Han YongSheng
    Li Ji
    SCIENCE CHINA-MATHEMATICS, 2017, 60 (11) : 2199 - 2218
  • [40] Geometry and Hardy spaces on spaces of homogeneous type in the sense of Coifman and Weiss
    HAN YanChang
    HAN YongSheng
    LI Ji
    Science China(Mathematics), 2017, 60 (11) : 2199 - 2218