Hardy and Carleson Measure Spaces Associated with Operators on Spaces of Homogeneous Type

被引:1
|
作者
Yanchang Han
Yongsheng Han
Ji Li
Chaoqiang Tan
机构
[1] South China Normal University,School of Mathematic Sciences
[2] Auburn University,Department of Mathematics
[3] Macquarie University,Department of Mathematics
[4] Shantou University,Department of Mathematics
来源
Potential Analysis | 2018年 / 49卷
关键词
Metric measure space; Hardy space; Atom; Molecule; Davies-Gaffney condition; Primary 42B35; Secondary 43A85, 42B25, 42B30, 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
Let (X, d, μ) be a metric measure space with doubling property. The Hardy spaces associated with operators L were introduced and studied by many authors. All these spaces, however, were first defined by L2(X) functions and finally the Hardy spaces were formally defined by the closure of these subspaces of L2(X) with respect to Hardy spaces norms. A natural and interesting question in this context is to characterize the closure. The purpose of this paper is to answer this question. More precisely, we will introduce CMOLp(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${CMO}_{L}^{p}(X)$\end{document}, the Carleson measure spaces associated with operators L, and characterize the Hardy spaces associated with operators L via (CMOLp(X))′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$({CMO}_{L}^{p}(X))'$\end{document}, the distributions of CMOLp(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${CMO}_{L}^{p}(X)$\end{document}.
引用
收藏
页码:247 / 265
页数:18
相关论文
共 50 条
  • [21] Localized Hardy spaces associated with operators
    Jiang, Renjin
    Yang, Dachun
    Zhou, Yuan
    APPLICABLE ANALYSIS, 2009, 88 (09) : 1409 - 1427
  • [22] Musielak-Orlicz-Hardy Spaces Associated with Operators and Their Applications
    Yang, Dachun
    Yang, Sibei
    JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (01) : 495 - 570
  • [23] BOUNDEDNESS FOR MULTILINEAR COMMUTATORS OF INTEGRAL OPERATORS IN HARDY AND HERZ-HARDY SPACES ON HOMOGENEOUS SPACES
    Chen Xianyi
    Liu Lanzhe
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2011, 5 (03): : 307 - 319
  • [24] Reverse Carleson measures in Hardy spaces
    Hartmann, Andreas
    Massaneda, Xavier
    Nicolau, Artur
    Ortega-Cerda, Joaquim
    COLLECTANEA MATHEMATICA, 2014, 65 (03) : 357 - 365
  • [25] Carleson inequalities on parabolic Hardy spaces
    Nakagawa, Hayato
    Suzuki, Noriaki
    HOKKAIDO MATHEMATICAL JOURNAL, 2017, 46 (01) : 1 - 14
  • [26] A Complete Real-Variable Theory of Hardy Spaces on Spaces of Homogeneous Type
    Ziyi He
    Yongsheng Han
    Ji Li
    Liguang Liu
    Dachun Yang
    Wen Yuan
    Journal of Fourier Analysis and Applications, 2019, 25 : 2197 - 2267
  • [27] A Complete Real-Variable Theory of Hardy Spaces on Spaces of Homogeneous Type
    He, Ziyi
    Han, Yongsheng
    Li, Ji
    Liu, Liguang
    Yang, Dachun
    Yuan, Wen
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (05) : 2197 - 2267
  • [28] Reverse Carleson measures in Hardy spaces
    Andreas Hartmann
    Xavier Massaneda
    Artur Nicolau
    Joaquim Ortega-Cerdà
    Collectanea Mathematica, 2014, 65 : 357 - 365
  • [29] Boundedness of Hausdorff Operators on Hardy Spaces over Homogeneous Spaces of Lie Groups
    Mirotin, Adolf R.
    JOURNAL OF LIE THEORY, 2021, 31 (04) : 1015 - 1024
  • [30] Hardy spaces associated to generalized Hardy operators and applications
    The Anh Bui
    Nader, Georges
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 29 (04):