An observation-based scaling model for climate sensitivity estimates and global projections to 2100

被引:0
作者
Raphaël Hébert
Shaun Lovejoy
Bruno Tremblay
机构
[1] Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung,Department of Physics
[2] McGill University,Department of Atmospheric and Oceanic Sciences
[3] McGill University,undefined
来源
Climate Dynamics | 2021年 / 56卷
关键词
Global mean temperature; Projections; Climate sensitivity; RCP scenarios; Global warming; Scaling;
D O I
暂无
中图分类号
学科分类号
摘要
We directly exploit the stochasticity of the internal variability, and the linearity of the forced response to make global temperature projections based on historical data and a Green’s function, or Climate Response Function (CRF). To make the problem tractable, we take advantage of the temporal scaling symmetry to define a scaling CRF characterized by the scaling exponent H, which controls the long-range memory of the climate, i.e. how fast the system tends toward a steady-state, and an inner scale τ≈2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \approx 2$$\end{document}   years below which the higher-frequency response is smoothed out. An aerosol scaling factor and a non-linear volcanic damping exponent were introduced to account for the large uncertainty in these forcings. We estimate the model and forcing parameters by Bayesian inference which allows us to analytically calculate the transient climate response and the equilibrium climate sensitivity as: 1.7-0.2+0.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.7^{+0.3} _{-0.2}$$\end{document}  K and 2.4-0.6+1.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.4^{+1.3} _{-0.6}$$\end{document}  K respectively (likely range). Projections to 2100 according to the RCP 2.6, 4.5 and 8.5 scenarios yield warmings with respect to 1880–1910 of: 1.5-0.2+0.4K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.5^{+0.4}_{-0.2}K$$\end{document}, 2.3-0.5+0.7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.3^{+0.7}_{-0.5}$$\end{document}  K and 4.2-0.9+1.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4.2^{+1.3}_{-0.9}$$\end{document}  K. These projection estimates are lower than the ones based on a Coupled Model Intercomparison Project phase 5 multi-model ensemble; more importantly, their uncertainties are smaller and only depend on historical temperature and forcing series. The key uncertainty is due to aerosol forcings; we find a modern (2005) forcing value of [-1.0,-0.3]Wm-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[-1.0, -0.3]\, \,\,\mathrm{Wm} ^{-2}$$\end{document} (90 % confidence interval) with median at -0.7Wm-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-0.7 \,\,\mathrm{Wm} ^{-2}$$\end{document}. Projecting to 2100, we find that to keep the warming below 1.5 K, future emissions must undergo cuts similar to RCP 2.6 for which the probability to remain under 1.5 K is 48 %. RCP 4.5 and RCP 8.5-like futures overshoot with very high probability.
引用
收藏
页码:1105 / 1129
页数:24
相关论文
共 240 条
  • [1] Aldrin M(2012)Bayesian estimation of climate sensitivity based on a simple climate model fitted to observations of hemispheric temperatures and global ocean heat content Environmetrics 23 253-271
  • [2] Holden M(2016)Bayesian estimation of climate sensitivity using observationally constrained simple climate models WIREs Clim Change 7 461-473
  • [3] Guttorp Skeie RB(2013)Uncertainty in temperature projections reduced using carbon cycle and climate observations Nat Clim Change 3 725-729
  • [4] Myhred G(1969)The effect of solar radiation variations on the climate of the Earth Tellus 21 611-619
  • [5] Berntsen TK(2005)Significant decadal-scale impact of volcanic eruptions on sea level and ocean heat content Nature 438 74-7
  • [6] Bodman RW(2014)Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends, Q.J.R Meteorol. Soc. 140 1935-1944
  • [7] Jones RN(2008)Volcanism and the little ice age PAGES Newslett 16 22-23
  • [8] Bodman RW(2006)Does the last glacial maximum constrain climate sensitivity? Geophys Res Lett 33 L18701-7168
  • [9] Karoly DJ(2017)Long-range persistence in global surface temperatures explained by linear multibox energy balance models J Clim 30 7157-970
  • [10] Rayner PJ(1995)Dynamical ensembles in stationary states J Stat Phys 80 931-1857