Algebraic Properties of Toeplitz Operators with Radial Symbols on the Bergman Space of the Unit Ball

被引:0
作者
Ze-Hua Zhou
Xing-Tang Dong
机构
[1] Tianjin University,Department of Mathematics
来源
Integral Equations and Operator Theory | 2009年 / 64卷
关键词
Primary 47B35; Secondary 32A36; Toeplitz operator; Bergman space; Mellin transform; radial symbol; quasihomogeneous symbol;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we discuss some algebraic properties of Toeplitz operators with radial symbols on the Bergman space of the unit ball in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}}^{n}$$\end{document}. We first determine when the product of two Toeplitz operators with radial symbols is a Toeplitz operator. Next, we investigate the zero-product problem for several Toeplitz operators with radial symbols. Also, the corresponding commuting problem of Toeplitz operators whose symbols are of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi^{k} \varphi$$\end{document} is studied, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \in {\mathbb{Z}}^{n}$$\end{document} and φ is a radial function.
引用
收藏
页码:137 / 154
页数:17
相关论文
empty
未找到相关数据