On a random walk model on sets with self-similar structure

被引:0
|
作者
N. S. Arkashov
V. A. Seleznev
机构
[1] Novosibirsk State Technical University,
[2] Novosibirsk State University,undefined
来源
Siberian Mathematical Journal | 2013年 / 54卷
关键词
self-similar sets; random walk; anomalous transport; diffusion; Hausdorff measure; Hausdorff dimension;
D O I
暂无
中图分类号
学科分类号
摘要
We construct a random walk model on sets with self-similar structure parametrized by a real line. The model in particular explains the arising nonlinearity with respect to the mean square time in the so-called anomalous transports.
引用
收藏
页码:968 / 983
页数:15
相关论文
共 50 条
  • [21] Estimating the Hausdorff dimensions of univoque sets for self-similar sets
    Chen, Xiu
    Jiang, Kan
    Li, Wenxia
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2019, 30 (05): : 862 - 873
  • [22] A Certain Family of Self-Similar Sets
    Igudesman, K. B.
    RUSSIAN MATHEMATICS, 2011, 55 (02) : 26 - 38
  • [23] Arithmetic progressions in self-similar sets
    Lifeng Xi
    Kan Jiang
    Qiyang Pei
    Frontiers of Mathematics in China, 2019, 14 : 957 - 966
  • [24] Homogeneous Kernels and Self-Similar Sets
    Chousionis, Vasileios
    Urbanski, Mariusz
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2015, 64 (02) : 411 - 431
  • [25] Dimensions of the boundaries of self-similar sets
    Lau, KS
    Ngai, SM
    EXPERIMENTAL MATHEMATICS, 2003, 12 (01) : 13 - 26
  • [26] Curvature Densities of Self-Similar Sets
    Rataj, Jan
    Zaehle, Martina
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2012, 61 (04) : 1425 - 1449
  • [27] Arithmetic progressions in self-similar sets
    Xi, Lifeng
    Jiang, Kan
    Pei, Qiyang
    FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (05) : 957 - 966
  • [28] Self-similar Sets as Hyperbolic Boundaries
    Lau, Ka-Sing
    Wang, Xiang-Yang
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (04) : 1777 - 1795
  • [29] BILIPSCHITZ EMBEDDING OF SELF-SIMILAR SETS
    Deng, Juan
    Wen, Zhi-Ying
    Xiong, Ying
    Xi, Li-Feng
    JOURNAL D ANALYSE MATHEMATIQUE, 2011, 114 : 63 - 97
  • [30] AN ANSWER TO A CONJECTURE ON SELF-SIMILAR SETS
    Baoguo Jia (Zhongshan University
    AnalysisinTheoryandApplications, 2007, (01) : 9 - 15