Intersection theory on linear subvarieties of toric varieties

被引:0
作者
Andreas Gross
机构
[1] TU Kaiserslautern,Fachbereich Mathematik
来源
Collectanea Mathematica | 2015年 / 66卷
关键词
Linear Subvariety; Toric Varieties; Tropical Cycle; Tropical Intersection Theory; Torus Orbit;
D O I
暂无
中图分类号
学科分类号
摘要
We give a complete description of the cohomology ring A∗(Z¯)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^*(\overline{Z})$$\end{document} of a compactification of a linear subvariety Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z$$\end{document} of a torus in a smooth toric variety whose fan Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} is supported on the tropicalization of Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z$$\end{document}. It turns out that cocycles on Z¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{Z}$$\end{document} canonically correspond to Minkowski weights on Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} and that the cup product is described by the intersection product on the tropical matroid variety Trop(Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{Trop}}}(Z)$$\end{document}.
引用
收藏
页码:175 / 190
页数:15
相关论文
共 31 条
[1]  
Allermann L(2010)First steps in tropical intersection theory Math. Z. 264 633-670
[2]  
Rau J(1997)Equivariant Chow groups for torus actions Transf. Gr. 2 225-267
[3]  
Brion M(1995)Wonderful models of subspace arrangements Sel. Math. New Ser. 1 459-494
[4]  
De Concini C(2013)Cocycles on tropical varieties via piecewise polynomials Proc. Am. Math. Soc. 141 481-497
[5]  
Procesi C(2013)The diagonal of tropical matroid varieties and cycle intersections Collect. Math. 64 185-210
[6]  
François G(1995)Intersection theory on spherical varieties J. Algebraic Geom. 4 181-193
[7]  
François G(1997)Intersection theory on toric varieties Topology 36 335-353
[8]  
Rau J(2006)Compactification of the moduli space of hyperplane arrangements J. Algebr. Geom. 15 657-680
[9]  
Fulton W(2009)Stable pair, tropical, and log canonical compactifications of moduli spaces of del Pezzo surfaces Invent. Math. 178 173-227
[10]  
MacPherson R(2008)Piecewise polynomials, Minkowski weights, and localization on toric varieties Algebra Number Theory 2 135-155