Hölder stability in determining the potential and the damping coefficient in a wave equation

被引:0
作者
Kaïs Ammari
Mourad Choulli
Faouzi Triki
机构
[1] University of Monastir,UR Analysis and Control of PDEs, UR 13ES64 Department of Mathematics, Faculty of Sciences of Monastir
[2] Université de Lorraine,Institut Élie Cartan de Lorraine, UMR CNRS 7502
[3] Université Grenoble-Alpes,Laboratoire Jean Kuntzmann, UMR CNRS 5224
来源
Journal of Evolution Equations | 2019年 / 19卷
关键词
Inverse problem; Hölder stability; Wave equation; Damping coefficient; Potential; 35R30;
D O I
暂无
中图分类号
学科分类号
摘要
We improve the preceding results obtained by Ammari and Choulli (J Differ Equ 259(7):3344–3365, 2015). They concern the stability issue of the inverse problem that consists in determining the potential and the damping coefficient in a wave equation from an initial-to-boundary operator. We partially modify the arguments in Ammari and Choulli  (2015) to show that actually we have a local Hölder stability instead of logarithmic stability.
引用
收藏
页码:305 / 319
页数:14
相关论文
共 29 条
[1]  
Adolfsson V(1997) domains and unique continuation at the boundary Commun. Pure Appl. Math. 50 935-969
[2]  
Escauriaza L(2009)Solving inverse source problems using observability. Applications to the Euler–Bernoulli plate equation SIAM J. Control Optim 48 1632-1659
[3]  
Alves C(2015)Logarithmic stability in determining two coefficients in a dissipative wave equation. Extensions to clamped Euler–Bernoulli beam and heat equations J. Differential Equations 259 3344-3365
[4]  
Silvestre AL(2017)Logarithmic stability in determining a boundary coefficient in an ibvp for the wave equation Dynamics of PDE 14 33-45
[5]  
Takahashi T(2016)Determining the potential in a wave equation without a geometric condition. Extension to the heat equation Proc. Amer. Math. Soc 144 4381-4392
[6]  
Tucsnak M(2016)Local feedback stabilisation to a non-stationary solution for a damped non-linear wave equation Math. Control Relat. Fields 6 1-25
[7]  
Ammari K(1992)Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary SIAM J. Control Optim. 30 1024-1065
[8]  
Choulli M(1981)Global uniqueness of a class of multidimensional inverse problem Sov. Math.-Dokl. 24 244-247
[9]  
Ammari K(2015)New stability estimates for the inverse medium problem with internal data SIAM J. Math. Anal. 47 1778-1799
[10]  
Choulli M(2014)Dependence of high-frequency waves with respect to potentials SIAM J. Control Optim. 52 3722-3750