Bounded solutions of some nonlinear elliptic equations in cylindrical domains

被引:0
作者
Calsina A. [1 ]
Sola-Morales J. [2 ]
València M. [2 ]
机构
[1] Departement de Matemàtiques, Facilitat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona
[2] Departament de Matemàtica Aplicada I, ETSEIB, Universitat Politècnica de Catalunya, 08028 Barcelona
关键词
Cylindrical domains; Infinite-dimensional dynamical systems; Nonlinear elliptic equations;
D O I
10.1007/BF02227486
中图分类号
学科分类号
摘要
The existence of a (unique) solution of the second-order semilinear elliptic equation ∑i.j = 0n aij(x) uxixj + f(∇u, u, x) = 0 with x = (x0, xl,..., xn) ∈ (s0, ∞) × Ω′, for a bounded domain Ω′, together with the additional conditions u(x) = 0 for (x1, x2,..., xn) ∈ ∂Ω′ u(x) = φ(x1, x2,..., xn) for x0 = s0 |u(x)| globally bounded is shown to be a well-posed problem under some sign and growth restrictions of f and its partial derivatives. It can be seen as an initial value problem, with initial value φ, in the space ℓ00(Ω̄′) and satisfying the strong order-preserving property. In the case that aij and f do not depend on x0 or are periodic in x0, it is shown that the corresponding dynamical system has a compact global attractor. Also, conditions on f are given under which all the solutions tend to zero as x0 tends to infinity. Proofs are strongly based on maximum and comparison techniques. © 1997 Plenum Publishing Corporation.
引用
收藏
页码:343 / 372
页数:29
相关论文
共 13 条
[1]  
Berestycki H., Nirenberg L., Some qualitative properties of solutions of semilinear elliptic equations in cylindrical domains, Analysis, et Cetera, pp. 115-164, (1990)
[2]  
Brunovsky P., Mora X., Polacik P., Sola-Morales J., Asymptotic behavior of solutions of semilinear elliptic equations on an unbounded strip, Acta Math. Univ. Comenianae, 62, pp. 163-183, (1991)
[3]  
Calsina A., Mora X., Sola-Morales J., The dynamical approach to elliptic problems in cylindrical domains, and a study of their parabolic singular limit, J. Diff. Eq., 102, pp. 244-304, (1993)
[4]  
Chen X.Y., Matano H., Veron L., Singularités anisotropes d'équations élliptiques sémilinéaires dans le plan, C.R. Acad. Sci. Paris, 303, pp. 963-966, (1986)
[5]  
Anisotropic singularities of solutions of nonlinear elliptic equations in R<sup>2</sup>, J. Fund. Anal., 83, pp. 50-97, (1989)
[6]  
Diaz J.I., Oleinik O.A., Nonlinear elliptic boundary-value problems in unbounded domains and the asymptotic behaviour of its solutions, C.R. Acad. Sci. Paris, 315, pp. 787-792, (1992)
[7]  
Flavin J.N., Knops R.J., Payne L.E., Asymptotic behaviour of solutions to semi-linear elliptic equations on the half-cylinder, ZAMP, 43, pp. 406-421, (1992)
[8]  
Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, 1st Ed., (1977)
[9]  
Hale J., Asymptotic Behavior of Dissipative Systems, (1988)
[10]  
Kirchgassner K., Wave solutions of reversible systems and applications, J. Diff. Eq., 45, pp. 113-127, (1982)