Twisted Semigroup Algebras

被引:0
作者
L. Rigal
P. Zadunaisky
机构
[1] Université Paris 13,
[2] Sorbonne Paris Cité,undefined
[3] LAGA,undefined
[4] UMR CNRS 7539,undefined
[5] Universidad de Buenos Aires,undefined
[6] FCEN,undefined
[7] Departamento de Matemáticas,undefined
来源
Algebras and Representation Theory | 2015年 / 18卷
关键词
Noncommutative geometry; Quantum toric varieties; Semigroup algebras; Artin-Schelter; Cohen-Macaulay; Artin-Schelter Gorenstein; 16T20; 16E65; 16S35; 16S80; 17B37; 16S38; 14A22;
D O I
暂无
中图分类号
学科分类号
摘要
We study 2-cocycle twists, or equivalently Zhang twists, of semigroup algebras over a field K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb K}$\end{document}. If the underlying semigroup is affine, that is abelian, cancellative and finitely generated, then SpecK[S]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf {Spec}~{\mathbb K}[S]$\end{document} is an affine toric variety over K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb K}$\end{document}, and we refer to the twists of K[S]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb K}[S]$\end{document} as quantum affine toric varieties. We show that every quantum affine toric variety has a “dense quantum torus”, in the sense that it has a localization isomorphic to a quantum torus. We study quantum affine toric varieties and show that many geometric regularity properties of the original toric variety survive the deformation process.
引用
收藏
页码:1155 / 1186
页数:31
相关论文
共 50 条
  • [41] Θ-twisted gravity
    Kobakhidze, Archil
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2008, 23 (16-17): : 2541 - 2545
  • [42] Mobius functions and semigroup representation theory
    Steinberg, Benjamin
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (05) : 866 - 881
  • [43] Twisted submanifolds of Rn
    Fiore, Gaetano
    Weber, Thomas
    LETTERS IN MATHEMATICAL PHYSICS, 2021, 111 (03)
  • [44] The Gauge Group and Perturbation Semigroup of an Operator System
    Dong, Rui
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2022, 18
  • [45] On the Gorenstein locus of simplicial affine semigroup rings
    Jafari, Raheleh
    Taherizadeh, Abdoljavad
    Yaghmaei, Marjan
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (09) : 4032 - 4039
  • [46] The quiver of the semigroup algebra of a left regular band
    Saliola, Franco V.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2007, 17 (08) : 1593 - 1610
  • [47] Untwisting twisted spectral triples
    Goffeng, Magnus
    Mesland, Bram
    Rennie, Adam
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2019, 30 (14)
  • [48] Residual Complex on the Tangent Cone of a Numerical Semigroup Ring
    Huang I.-C.
    Acta Mathematica Vietnamica, 2015, 40 (1) : 149 - 160
  • [49] Lorentz signature and twisted spectral triples
    Devastato, A.
    Farnsworth, S.
    Lizzi, F.
    Martinetti, P.
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (03):
  • [50] Gauge transformations for twisted spectral triples
    Giovanni Landi
    Pierre Martinetti
    Letters in Mathematical Physics, 2018, 108 : 2589 - 2626