Twisted Semigroup Algebras

被引:0
作者
L. Rigal
P. Zadunaisky
机构
[1] Université Paris 13,
[2] Sorbonne Paris Cité,undefined
[3] LAGA,undefined
[4] UMR CNRS 7539,undefined
[5] Universidad de Buenos Aires,undefined
[6] FCEN,undefined
[7] Departamento de Matemáticas,undefined
来源
Algebras and Representation Theory | 2015年 / 18卷
关键词
Noncommutative geometry; Quantum toric varieties; Semigroup algebras; Artin-Schelter; Cohen-Macaulay; Artin-Schelter Gorenstein; 16T20; 16E65; 16S35; 16S80; 17B37; 16S38; 14A22;
D O I
暂无
中图分类号
学科分类号
摘要
We study 2-cocycle twists, or equivalently Zhang twists, of semigroup algebras over a field K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb K}$\end{document}. If the underlying semigroup is affine, that is abelian, cancellative and finitely generated, then SpecK[S]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf {Spec}~{\mathbb K}[S]$\end{document} is an affine toric variety over K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb K}$\end{document}, and we refer to the twists of K[S]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb K}[S]$\end{document} as quantum affine toric varieties. We show that every quantum affine toric variety has a “dense quantum torus”, in the sense that it has a localization isomorphic to a quantum torus. We study quantum affine toric varieties and show that many geometric regularity properties of the original toric variety survive the deformation process.
引用
收藏
页码:1155 / 1186
页数:31
相关论文
共 50 条
  • [31] Finite dimensional semigroup quadratic algebras with the minimal number of relations
    Natalia Iyudu
    Stanislav Shkarin
    Monatshefte für Mathematik, 2012, 168 : 239 - 252
  • [32] Finite dimensional semigroup quadratic algebras with the minimal number of relations
    Iyudu, Natalia
    Shkarin, Stanislav
    MONATSHEFTE FUR MATHEMATIK, 2012, 168 (02): : 239 - 252
  • [33] Pseudo-contractibility and pseudo-amenability of semigroup algebras
    Essmaili, M.
    Rostami, M.
    Medghalchi, A. R.
    ARCHIV DER MATHEMATIK, 2011, 97 (02) : 167 - 177
  • [34] Pseudo-contractibility and pseudo-amenability of semigroup algebras
    M. Essmaili
    M. Rostami
    A. R. Medghalchi
    Archiv der Mathematik, 2011, 97 : 167 - 177
  • [35] Counter examples for pseudo-amenability of some semigroup algebras
    Sahami, Amir
    ANNALES UNIVERSITATIS PAEDAGOGICAE CRACOVIENSIS-STUDIA MATHEMATICA, 2020, 19 (01) : 35 - 38
  • [36] Combinatorics of words and semigroup algebras which are sums of locally nilponent subalgebras
    Drensky, V
    Hammoudi, L
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2004, 47 (03): : 343 - 353
  • [37] Twisted supersymmetry: Twisted symmetry versus renormalizability
    Dimitrijevic, Marija
    Nikolic, Biljana
    Radovanovic, Voja
    PHYSICAL REVIEW D, 2011, 83 (06):
  • [38] ON THE SEMIGROUP ALGEBRA OF BINARY RELATIONS
    Bremner, Murray R.
    El Bachraoui, Mohamed
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (09) : 3499 - 3505
  • [39] The maximal denumerant of a numerical semigroup
    Lance Bryant
    James Hamblin
    Semigroup Forum, 2013, 86 : 571 - 582
  • [40] The maximal denumerant of a numerical semigroup
    Bryant, Lance
    Hamblin, James
    SEMIGROUP FORUM, 2013, 86 (03) : 571 - 582