Twisted Semigroup Algebras

被引:0
作者
L. Rigal
P. Zadunaisky
机构
[1] Université Paris 13,
[2] Sorbonne Paris Cité,undefined
[3] LAGA,undefined
[4] UMR CNRS 7539,undefined
[5] Universidad de Buenos Aires,undefined
[6] FCEN,undefined
[7] Departamento de Matemáticas,undefined
来源
Algebras and Representation Theory | 2015年 / 18卷
关键词
Noncommutative geometry; Quantum toric varieties; Semigroup algebras; Artin-Schelter; Cohen-Macaulay; Artin-Schelter Gorenstein; 16T20; 16E65; 16S35; 16S80; 17B37; 16S38; 14A22;
D O I
暂无
中图分类号
学科分类号
摘要
We study 2-cocycle twists, or equivalently Zhang twists, of semigroup algebras over a field K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb K}$\end{document}. If the underlying semigroup is affine, that is abelian, cancellative and finitely generated, then SpecK[S]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf {Spec}~{\mathbb K}[S]$\end{document} is an affine toric variety over K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb K}$\end{document}, and we refer to the twists of K[S]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb K}[S]$\end{document} as quantum affine toric varieties. We show that every quantum affine toric variety has a “dense quantum torus”, in the sense that it has a localization isomorphic to a quantum torus. We study quantum affine toric varieties and show that many geometric regularity properties of the original toric variety survive the deformation process.
引用
收藏
页码:1155 / 1186
页数:31
相关论文
共 50 条
  • [21] A groupoid approach to discrete inverse semigroup algebras
    Steinberg, Benjamin
    ADVANCES IN MATHEMATICS, 2010, 223 (02) : 689 - 727
  • [22] APPROXIMATE AMENABILITY OF CERTAIN INVERSE SEMIGROUP ALGEBRAS
    Mehdi ROSTAMI
    Abdolrasoul POURABBAS
    Morteza ESSMAILI
    ActaMathematicaScientia, 2013, 33 (02) : 565 - 577
  • [23] A note on approximate biprojectivity of some semigroup algebras
    Sahami, A.
    Askari-Sayah, M.
    Shariati, S. F.
    Rostami, M.
    SEMIGROUP FORUM, 2022, 105 (02) : 570 - 574
  • [24] Simplicity of inverse semigroup and etale groupoid algebras
    Steinberg, Benjamin
    Szakacs, Nora
    ADVANCES IN MATHEMATICS, 2021, 380
  • [25] APPROXIMATE AMENABILITY OF CERTAIN INVERSE SEMIGROUP ALGEBRAS
    Rostami, Mehdi
    Pourabbas, Abdolrasoul
    Essmaili, Morteza
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (02) : 565 - 577
  • [26] A note on approximate biprojectivity of some semigroup algebras
    A. Sahami
    M. Askari-Sayah
    S. F. Shariati
    M. Rostami
    Semigroup Forum, 2022, 105 : 570 - 574
  • [27] ON ITERATED TWISTED TENSOR PRODUCTS OF ALGEBRAS
    Martinez, Pascual Jara
    Pena, Javier Lopez
    Panaite, Florin
    Van Oystaeyen, Freddy
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2008, 19 (09) : 1053 - 1101
  • [28] Johnson pseudo-contractibility of certain semigroup algebras
    Sahami, A.
    Pourabbas, A.
    SEMIGROUP FORUM, 2018, 97 (02) : 203 - 213
  • [29] HEREDITARY PROPERTIES OF CHARACTER INJECTIVITY WITH APPLICATIONS TO SEMIGROUP ALGEBRAS
    Essmaili, M.
    Fozouni, M.
    Laali, J.
    ANNALS OF FUNCTIONAL ANALYSIS, 2015, 6 (02): : 162 - 172
  • [30] Johnson pseudo-contractibility of certain semigroup algebras
    A. Sahami
    A. Pourabbas
    Semigroup Forum, 2018, 97 : 203 - 213