Twisted Semigroup Algebras

被引:0
作者
L. Rigal
P. Zadunaisky
机构
[1] Université Paris 13,
[2] Sorbonne Paris Cité,undefined
[3] LAGA,undefined
[4] UMR CNRS 7539,undefined
[5] Universidad de Buenos Aires,undefined
[6] FCEN,undefined
[7] Departamento de Matemáticas,undefined
来源
Algebras and Representation Theory | 2015年 / 18卷
关键词
Noncommutative geometry; Quantum toric varieties; Semigroup algebras; Artin-Schelter; Cohen-Macaulay; Artin-Schelter Gorenstein; 16T20; 16E65; 16S35; 16S80; 17B37; 16S38; 14A22;
D O I
暂无
中图分类号
学科分类号
摘要
We study 2-cocycle twists, or equivalently Zhang twists, of semigroup algebras over a field K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb K}$\end{document}. If the underlying semigroup is affine, that is abelian, cancellative and finitely generated, then SpecK[S]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf {Spec}~{\mathbb K}[S]$\end{document} is an affine toric variety over K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb K}$\end{document}, and we refer to the twists of K[S]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb K}[S]$\end{document} as quantum affine toric varieties. We show that every quantum affine toric variety has a “dense quantum torus”, in the sense that it has a localization isomorphic to a quantum torus. We study quantum affine toric varieties and show that many geometric regularity properties of the original toric variety survive the deformation process.
引用
收藏
页码:1155 / 1186
页数:31
相关论文
共 50 条
  • [1] Twisted Semigroup Algebras
    Rigal, L.
    Zadunaisky, P.
    ALGEBRAS AND REPRESENTATION THEORY, 2015, 18 (05) : 1155 - 1186
  • [2] Numerical semigroup algebras
    Huang, I-Chiau
    Kim, Mee-Kyoung
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (03) : 1079 - 1088
  • [3] Hyperbolicity of semigroup algebras
    Iwaki, E.
    Juriaans, S. O.
    Souza Filho, A. C.
    JOURNAL OF ALGEBRA, 2008, 319 (12) : 5000 - 5015
  • [4] BIFLATNESS OF CERTAIN SEMIGROUP ALGEBRAS
    Essmaili, M.
    Medghalchi, A.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2013, 39 (05) : 959 - 969
  • [5] HYPERBOLICITY OF SEMIGROUP ALGEBRAS II
    Iwaki, E.
    Jespers, E.
    Juriaans, S. O.
    Souza Filho, A. C.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2010, 9 (06) : 871 - 876
  • [6] Cellularity of Some Semigroup Algebras
    Yingdan Ji
    Yanfeng Luo
    Bulletin of the Malaysian Mathematical Sciences Society, 2017, 40 : 215 - 235
  • [7] Locally ample semigroup algebras
    Guo, Xiaojiang
    Shum, K. P.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2014, 7 (04)
  • [8] Module amenability for semigroup algebras
    Amini, M
    SEMIGROUP FORUM, 2004, 69 (02) : 243 - 254
  • [9] Cellularity of Some Semigroup Algebras
    Ji, Yingdan
    Luo, Yanfeng
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2017, 40 (01) : 215 - 235
  • [10] Perturbation semigroup of matrix algebras
    Neumann, Niels
    van Suijlekom, Walter D.
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2016, 10 (01) : 245 - 264