Axion production and CMB spectral distortion in cosmological tangled magnetic field

被引:0
作者
Damian Ejlli
机构
[1] INFN Laboratori Nazionali del Gran Sasso,Theory group
[2] Novosibirsk State University,Department of Physics
来源
The European Physical Journal C | 2015年 / 75卷
关键词
Magnetic Field; Cosmic Microwave Background; Spectral Distortion; Magnetic Field Energy; Hubble Horizon;
D O I
暂无
中图分类号
学科分类号
摘要
Axion production due to photon–axion mixing in tangled magnetic fields prior to the recombination epoch and magnetic field damping can generate cosmic microwave background (CMB) spectral distortions. In particular, the contribution of both processes to the CMB μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} distortion in the case of resonant photon–axion mixing is studied. Assuming that the magnetic field power spectrum is approximated by a power law, PB(k)∝kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_B(k)\propto k^n$$\end{document} with spectral index n, it is shown that for magnetic field cut-off scales 172.5 pc ≤λB≤4×103\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le \lambda _B\le 4\times 10^3$$\end{document} pc, the axion contribution to the CMB μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} distortion is subdominant in comparison with magnetic field damping in the cosmological plasma. Using the COBE upper limit on μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} and for the magnetic field scale λB≃415\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _B\simeq 415$$\end{document} pc, a weaker limit in comparison with other studies on the magnetic field strength (B0≤8.5×10-8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_0\le 8.5\times 10^{-8}$$\end{document} G) up to a factor 10 for the DFSZ axion model and axion mass ma≥2.6×10-6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_a\ge 2.6\times 10^{-6}$$\end{document} eV is found. A forecast for the expected sensitivity of PIXIE/PRISM on μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is also presented.
引用
收藏
相关论文
共 79 条
  • [1] Zel’dovich YB(1965)undefined JETP 48 986-undefined
  • [2] Thorne KS(1967)undefined ApJ 148 51-undefined
  • [3] Barrow JD(1997)undefined Phys. Rev. Lett. 78 3610-undefined
  • [4] Ferreira PG(2001)undefined Phys. Rept. 348 163-undefined
  • [5] Silk J(2004)undefined Int. J. Mod. Phys. D 13 391-undefined
  • [6] Grasso D(2008)undefined Rept. Prog. Phys. 71 0046091-undefined
  • [7] Rubinstein HR(2013)undefined Astron. Astrophys. Rev. 21 62-undefined
  • [8] Giovannini M(2014)undefined Phys. Rev. D 90 063514-undefined
  • [9] Kulsrud RM(2014)undefined Phys. Rev. D 90 123527-undefined
  • [10] Zweibel EG(1998)undefined Phys. Rev. D 57 3264-undefined