Regular global attractors of type III thermoelastic extensible beams

被引:0
作者
Michele Coti Zelati
Vittorino Pata
Ramon Quintanilla
机构
[1] Indiana University,Mathematics Department
[2] Politecnico di Milano,Dipartimento di Matematica “F. Brioschi”
[3] Matemática Aplicada 2 ETSEIAT-UPC Terrassa,undefined
来源
Chinese Annals of Mathematics, Series B | 2010年 / 31卷
关键词
Type III thermoelastic extensible beam; Lyapunov functional; Global attractor; 35B41; 37B25; 74F05; 74K10;
D O I
暂无
中图分类号
学科分类号
摘要
For β ∈ ℝ, the authors consider the evolution system in the unknown variables u and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\{ \begin{gathered} \partial _{tt} u + \partial _{xxxx} u + \partial _{xxt} \alpha - \left( {\beta + \left\| {\partial _x u} \right\|_{L^2 }^2 } \right)\partial _{xx} u = f, \hfill \\ \partial _{tt} \alpha - \partial _{xx} \alpha - \partial _{xxt} \alpha - \partial _{xxt} u = 0 \hfill \\ \end{gathered} \right. $$\end{document} describing the dynamics of type III thermoelastic extensible beams, where the dissipation is entirely contributed by the second equation ruling the evolution of the thermal displacement α. Under natural boundary conditions, the existence of the global attractor of optimal regularity for the related dynamical system acting on the phase space of weak energy solutions is established.
引用
收藏
页码:619 / 630
页数:11
相关论文
共 55 条
  • [1] Ball J. M.(1973)Initial-boundary value problems for an extensible beam J. Math. Anal. Appl. 42 61-90
  • [2] Bucci F.(2008)Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations Discrete Cont. Dyn. Systems 22 557-586
  • [3] Chueshov I.(2008)Attractors and long time behavior of von Karman thermoelastic plates Appl. Math. Optim. 58 195-241
  • [4] Chueshov I.(2010)Steady states of the hinged extensible beam with external load Math. Models Methods Appl. Sci. 20 43-58
  • [5] Lasiecka I.(1970)Free vibrations and dynamic buckling of the extensible beam J. Math. Anal. Appl. 29 443-454
  • [6] Coti Zelati M.(1993)Exponential attractors for extensible beam equations Nonlinearity 6 457-479
  • [7] Giorgi C.(1992)Is the Fourier theory of heat propagation paradoxical? Rend. Circ. Mat. Palermo 41 5-28
  • [8] Pata V.(2009)Global attractors for the extensible thermoelastic beam system J. Diff. Eqs. 246 3496-3517
  • [9] Dickey R. W.(2008)On the extensible viscoelastic beam Nonlinearity 21 713-733
  • [10] Eden A.(1992)On undamped heat waves in an elastic solid J. Thermal Stresses 15 253-264