Limits of maximal monotone operators driven by their representative functions

被引:0
作者
Yboon García
Marc Lassonde
机构
[1] Universidad del Pacífico,
[2] Université des Antilles,undefined
[3] LIMOS,undefined
来源
Optimization Letters | 2019年 / 13卷
关键词
Maximal monotone operator; Convex function; Representative function; Epi-convergence; Mosco-convergence; Subdifferential;
D O I
暂无
中图分类号
学科分类号
摘要
In a previous paper, the authors showed that in a reflexive Banach space the lower limit of a sequence of maximal monotone operators is always representable by a convex function. The present paper gives precisions to the latter result by demonstrating the continuity of the representation with respect to the epi-convergence of the representative functions, and the stability of the class of maximal monotone operators with respect to the Mosco-convergence of their representative functions.
引用
收藏
页码:795 / 803
页数:8
相关论文
共 17 条
  • [1] Asplund E(1967)Averaged norms Israel J. Math. 5 227-233
  • [2] Attouch H(1977)Convergence de fonctions convexes, des sous-différentiels et semi-groupes associés C. R. Acad. Sci. Paris Sér. A-B 284 A539-A542
  • [3] Bauschke HH(2009)Monotone linear relations: maximality and Fitzpatrick functions J. Convex Anal. 16 673-686
  • [4] Wang X(2003)Maximal monotonicity, conjugation and the duality product Proc. Am. Math. Soc. 131 2379-2383
  • [5] Yao L(2012)Representable monotone operators and limits of sequences of maximal monotone operators Set-Valued Var. Anal. 20 61-73
  • [6] Burachik RS(2009)Maximal monotone operators with a unique extension to the bidual J. Convex Anal. 16 409-421
  • [7] Svaiter BF(2005)Monotone operators representable by l.s.c. convex functions Set-Valued Anal. 13 21-46
  • [8] García Y(1971)On the continuity of the Young-Fenchel transform J. Math. Anal. Appl. 35 518-535
  • [9] Lassonde M(2006)On the convergence of maximal monotone operators Proc. Am. Math. Soc. 134 1937-1946
  • [10] Marques Alves M(1970)On the maximality of sums of nonlinear monotone operators Trans. Am. Math. Soc. 149 75-88