Intuitionistic Propositional Logic with Galois Negations

被引:0
作者
Minghui Ma
Guiying Li
机构
[1] Sun Yat-sen University,Institute of Logic and Cognition Department of Philosophy
来源
Studia Logica | 2023年 / 111卷
关键词
Heyting algebra; Galois negations; Intuitionistic logic; Tense logic;
D O I
暂无
中图分类号
学科分类号
摘要
Intuitionistic propositional logic with Galois negations (IGN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {IGN}$$\end{document}) is introduced. Heyting algebras with Galois negations are obtained from Heyting algebras by adding the Galois pair (¬,∼)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\lnot ,{\sim })$$\end{document} and dual Galois pair (¬˙,∼˙)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\dot{\lnot },\dot{\sim })$$\end{document} of negations. Discrete duality between GN-frames and algebras as well as the relational semantics for IGN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {IGN}$$\end{document} are developed. A Hilbert-style axiomatic system HN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {HN}$$\end{document} is given for IGN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {IGN}$$\end{document}, and Galois negation logics are defined as extensions of IGN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {IGN}$$\end{document}. We give the bi-tense logic S4Nt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {S4N}_t$$\end{document} which is obtained from the minimal tense extension of the modal logic S4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {S4}$$\end{document} by adding tense operators. We give a new extended Gödel translation τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} and prove that IGN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {IGN}$$\end{document} is embedded into S4Nt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {S4N}_t$$\end{document} by τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}. Moreover, every Kripke-complete Galois negation logic L is embedded into its tense companion τ(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (L)$$\end{document}.
引用
收藏
页码:21 / 56
页数:35
相关论文
共 50 条
[41]   Intuitionistic Fuzzy Implications and the Axioms of Intuitionistic Logic [J].
Angelova, Nora A. ;
Atanassov, Krassimir T. .
PROCEEDINGS OF THE 2015 CONFERENCE OF THE INTERNATIONAL FUZZY SYSTEMS ASSOCIATION AND THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY, 2015, 89 :1578-1584
[42]   Eskolemization in Intuitionistic Logic [J].
Baaz, Matthias ;
Iemhoff, Rosalie .
JOURNAL OF LOGIC AND COMPUTATION, 2011, 21 (04) :625-638
[43]   Intuitionistic computability logic [J].
Japaridze, Giorgi .
ACTA CYBERNETICA, 2007, 18 (01) :77-113
[44]   On an Intuitionistic Modal Logic [J].
G. M. Bierman ;
V. C. V. de Paiva .
Studia Logica, 2000, 65 (3) :383-416
[45]   Intuitionistic Logic and Counterfactuals [J].
Cook, Roy T. .
UNIVERSITAS-MONTHLY REVIEW OF PHILOSOPHY AND CULTURE, 2020, 47 (08) :93-115
[46]   Ceres in intuitionistic logic [J].
Cerna, David ;
Leitsch, Alexander ;
Reis, Giselle ;
Wolfsteiner, Simon .
ANNALS OF PURE AND APPLIED LOGIC, 2017, 168 (10) :1783-1836
[47]   Intuitionistic ancestral logic [J].
Cohen, Liron ;
Constable, Robert L. .
JOURNAL OF LOGIC AND COMPUTATION, 2019, 29 (04) :469-486
[48]   The information in intuitionistic logic [J].
van Benthem, Johan .
SYNTHESE, 2009, 167 (02) :251-270
[49]   Knowability and intuitionistic logic [J].
David De Vidi ;
Graham Solomon .
Philosophia, 2001, 28 :319-334
[50]   The information in intuitionistic logic [J].
Johan van Benthem .
Synthese, 2009, 167