On averages of Fourier coefficients of Maass cusp forms

被引:0
作者
Guangshi Lü
机构
[1] Shandong University,Department of Mathematics
来源
Archiv der Mathematik | 2013年 / 100卷
关键词
Primary 11F30; Secondary 11F66; Fourier coefficients; Maass cusp form; Symmetric power ; -function;
D O I
暂无
中图分类号
学科分类号
摘要
Let φ be a primitive Maass cusp form and tφ(n) be its nth Fourier coefficient at the cusp infinity. In this short note, we are interested in the estimation of the sums \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sum_{n \leq x}t_{\varphi}(n)}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sum_{n \leq x}t_{\varphi}(n^2)}$$\end{document}. We are able to improve the previous results by showing that for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon > 0}$$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum_{n \leq x}t_{\varphi}(n) \ll\, _{\varphi, \varepsilon} x^{\frac{1027}{2827} + \varepsilon} \quad {and}\quad\sum_{n \leq x}t_{\varphi}(n^2) \ll\,_{\varphi, \varepsilon} x^{\frac{489}{861} + \varepsilon}.$$\end{document}
引用
收藏
页码:255 / 265
页数:10
相关论文
共 40 条
[1]  
Barthel L.(1994)A nonvanishing result for twists of Duke Math. J. 74 681-700
[2]  
Ramakrishnan D.(1962)-functions of Ann. of Math. 76 93-136
[3]  
Chandrasekharan K.(1932)( J. Reine Angew. Math. 169 158-176
[4]  
Narasimhan R.(1974)) Inst. Hautes Études Sci. Publ. Math. 43 29-39
[5]  
Davenport H.(1984)Functional equations with multiple gamma-factors and the average order of arithmetical functions Math. Ann. 266 507-511
[6]  
Deligne P.(2006)On certain exponential sums J. of Math. Sci. 133 1749-1755
[7]  
Elliott P.D.T.A.(1978)La Conjecture de Weil Ann. Sci. École Norm. Sup. 11 471-552
[8]  
Moreno C.J.(1989)On the absolute value of Ramanujan’s τ-function Enseign. Math. 35 375-382
[9]  
Shahidi F.(1927)Identities involving coefficients of automorphic Abh. Math. Sem. Univ. Hamburg 5 199-224
[10]  
Fomenko O.M.(2009)-functions Duke Math. J. 146 401-448