Normal Families of Meromorphic Functions whose Derivatives Omit a Function

被引:18
作者
Xuecheng Pang
Degui Yang
Lawrence Zalcman
机构
[1] East China Normal University,Department of Mathematics
[2] South China Agricultural University,College of Sciences
[3] Bar-Ilan University,Department of Mathematics and Statistics
关键词
Normal families; omitted functions; 30D45;
D O I
10.1007/BF03321020
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\cal F$\end{document} be a family of functions meromorphic on the plane domain D, and let h be a holomorphic function on D, h n= 0. Suppose that, for each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f \in {\cal F}$\end{document}, f(m)(z) ≠ h(z) for z ∈ D. Then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\cal F$\end{document} is normal on D (i) if all zeros of functions in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\cal F$\end{document} have multiplicity at least m + 3, or (ii) if all zeros of functions in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\cal F$\end{document} have multiplicity at least m + 2 and h has only multiple zeros on D, or (iii) if all poles of functions in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\cal F$\end{document} are multiple and all zeros have multiplicity at least m + 2.
引用
收藏
页码:257 / 265
页数:8
相关论文
共 14 条
[1]  
Bergweiler W(1995)On the zeros of certain homogeneous differential polynomials Arch. Math. 64 199-202
[2]  
Bergweiler W(2001)Normality and exceptional values of derivatives Proc. Amer. Math. Soc. 120 121-129
[3]  
Bergweiler W(1995)On the singularities of the inverse of a meromorphic function of finite order Rev. Mat. Iberoamericana 11 355-373
[4]  
Eremenko A(1990)On a problem of Hayman Kodai Math. J. 13 386-390
[5]  
Hua X(2001)On theorems of Yang and Schwick Complex Variables 46 315-321
[6]  
Nevo S(2001)Applications of Zalcman’s Lemma to Analysis 21 289-325
[7]  
Nevo S(2000)-normal families Bull. London Math. Soc. 32 325-331
[8]  
Pang X(1997)Normal families and shared values Bull. London Math. Soc. 29 425-432
[9]  
Zalcman L(1998)Exceptional functions and normality Acta Math. Sinica N. S. 14 17-26
[10]  
Schwick W(1986)Picard values and normal families of meromorphic functions with multiple zeros Sci. Sinica Ser. A 29 1263-1274