Property Testing on k-Vertex-Connectivity of Graphs

被引:0
作者
Yuichi Yoshida
Hiro Ito
机构
[1] Kyoto University,School of Informatics
来源
Algorithmica | 2012年 / 62卷
关键词
Property testing; Vertex connectivity;
D O I
暂无
中图分类号
学科分类号
摘要
We present an algorithm for testing the k-vertex-connectivity of graphs with the given maximum degree. The time complexity of the algorithm is independent of the number of vertices and edges of graphs. Fixed degree bound d, a graph G with n vertices and a maximum degree at most d is called ε-far from k-vertex-connectivity when at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{\epsilon dn}{2}$\end{document} edges must be added to or removed from G to obtain a k-vertex-connected graph with a maximum degree at most d. The algorithm always accepts every graph that is k-vertex-connected and rejects every graph that is ε-far from k-vertex-connectivity with a probability of at least 2/3. The algorithm runs in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(d(\frac{c}{\epsilon d})^{k}\log\frac {1}{\epsilon d})$\end{document} time (c>1 is a constant) for (k−1)-vertex-connected graphs, and in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(d(\frac{ck}{\epsilon d})^{k}\log\frac{k}{\epsilon d})$\end{document} time (c>1 is a constant) for general graphs. It is the first constant-time k-vertex-connectivity testing algorithm for general k≥4.
引用
收藏
页码:701 / 712
页数:11
相关论文
共 17 条
  • [1] Bienstock D.(1990)On the structure of minimum-weight k-connected spanning networks SIAM J. Discrete Math. 3 320-329
  • [2] Brickell E.F.(2001)On rooted node-connectivity problems Algorithmica 30 353-375
  • [3] Monma C.L.(1998)Property testing and its connection to learning and approximation J. ACM 45 653-750
  • [4] Cheriyan J.(2005)Independence free graphs and vertex connectivity augmentation J. Comb. Theory Ser. B 94 31-77
  • [5] Jordán T.(1995)On the optimal vertex-connectivity augmentation J. Comb. Theory Ser. B 63 8-20
  • [6] Nutov Z.(1997)A note on the vertex-connectivity augmentation problem J. Comb. Theory Ser. B 71 294-301
  • [7] Goldreich O.(1996)Robust characterizations of polynomials with applications to program testing SIAM J. Comput. 25 252-271
  • [8] Goldwasser S.(2010)Testing J. Syst. Sci. Complex. 23 91-101
  • [9] Ron D.(undefined)-edge-connectivity of digraphs undefined undefined undefined-undefined
  • [10] Jackson B.(undefined)undefined undefined undefined undefined-undefined