Nonlinear quasi-normal modes: uniform approximation

被引:0
作者
Bruno Bucciotti
Adrien Kuntz
Francesco Serra
Enrico Trincherini
机构
[1] Scuola Normale Superiore,
[2] INFN Sezione di Pisa,undefined
来源
Journal of High Energy Physics | / 2023卷
关键词
Black Holes; Classical Theories of Gravity;
D O I
暂无
中图分类号
学科分类号
摘要
Recent works have suggested that nonlinear (quadratic) effects in black hole perturbation theory may be important for describing a black hole ringdown. We show that the technique of uniform approximations can be used to accurately compute 1) nonlinear amplitudes at large distances in terms of the linear ones, 2) linear (and nonlinear) quasi-normal mode frequencies, 3) the wavefunction for both linear and nonlinear modes. Our method can be seen as a generalization of the WKB approximation, with the advantages of not losing accuracy at large overtone number and not requiring matching conditions. To illustrate the effectiveness of this method we consider a simplified source for the second-order Zerilli equation, which we use to numerically compute the amplitude of nonlinear modes for a range of values of the angular momentum number.
引用
收藏
相关论文
共 38 条
[1]  
Chandrasekhar S(1975)undefined Proc. Roy. Soc. Lond. A 344 441-undefined
[2]  
Detweiler SL(1985)undefined Proc. Roy. Soc. Lond. A 402 285-undefined
[3]  
Leaver EW(2019)undefined JHEP 02 127-undefined
[4]  
Franciolini G(2023)undefined JHEP 03 060-undefined
[5]  
Hui L(2003)undefined Adv. Theor. Math. Phys. 7 307-undefined
[6]  
Penco R(2022)undefined Ann. Henri Poincare 23 1951-undefined
[7]  
Santoni L(2023)undefined Commun. Math. Phys. 397 635-undefined
[8]  
Trincherini E(2023)undefined JHEP 11 059-undefined
[9]  
Hui L(2021)undefined Universe 7 476-undefined
[10]  
Podo A(2023)undefined Phys. Rev. D 108 L021501-undefined