The Solutions for the Boundary Layer Problem of Boltzmann Equation in a Half-Space

被引:0
作者
Xiongfeng Yang
机构
[1] Shanghai Jiao Tong University,Department of Mathematics
来源
Journal of Statistical Physics | 2011年 / 143卷
关键词
Boundary layer solutions; Cutoff hard potentials; Half-space; Boltzmann equation;
D O I
暂无
中图分类号
学科分类号
摘要
We study the half space boundary layer problem for Boltzmann equation with cut-off potentials in all the cases −3<γ≤1, while the boundary condition is imposed on the incoming particles of Dirichlet type, and the solution is assumed to approach to a global Maxwellian at the far field. The same as for cut-off hard sphere model, there is an implicit solvability condition on the boundary data which gives the co-dimensions of the boundary data in terms of positive characteristic speeds.
引用
收藏
页码:168 / 196
页数:28
相关论文
共 43 条
[1]  
Aoki K.(1991)Numerical analysis of steady flows of a gas condensing on or evaporating from its plane condensed phase on the basis of kinetic theory: effect of gas motion along the condensed phase Phys. Fluids A, Fluid Dyn. 3 2260-2275
[2]  
Nishino K.(1986)The Milne and Kramers problems for the Boltzmann equation of a hard sphere gas Commun. Pure Appl. Math. 49 323-352
[3]  
Sone Y.(2006)Half-space problems for the Boltzmann equation: a survey J. Stat. Phys. 124 275-300
[4]  
Sugimoto H.(1932)Sur la théorie de l’équation intégrodifférentielle de Boltzmann Acta Math. 60 91-142
[5]  
Bardos C.(1998)The Milne problem with a force term Transp. Theory Stat. Phys. 27 1-33
[6]  
Caflish R.E.(2004)Existence of boundary layer solutions to the Boltzmann equation Anal. Appl. 2 337-363
[7]  
Nicolaenko B.(1988)A classification of well-posed kinetic layer problems Commun. Pure Appl. Math. 41 409-435
[8]  
Bardos C.(2008)Analysis of the boundary layer equation in the kinetic theory of gases Bull. Inst. Math. Acad. Sin. 3 211-242
[9]  
Golse F.(1989)Stationary solutions of the linearized Boltzmann equation in a half-space Math. Methods Appl. Sci. 11 483-502
[10]  
Sone Y.(1985)Un résultat de compacité pour l’équation de transport et application au calcul de la limite de la valeur principale d’un opérateur de transport C. R. Acad. Sci. 301 341-344