Sliding Mode Neuro Adaptive Control in Trajectory Tracking for Mobile Robots

被引:0
|
作者
Francisco G. Rossomando
Carlos Soria
Ricardo Carelli
机构
[1] Secretaría de de Estado de Ciencia,Subsecretaría de Promoción Científica
[2] Tecnología e Innovación,Instituto de Automática, Facultad de Ingeniería
[3] Universidad Nacional de San Juan,undefined
来源
Journal of Intelligent & Robotic Systems | 2014年 / 74卷
关键词
Mobile robot; Nonlinear systems; Adaptive neural control; Sliding mode control;
D O I
暂无
中图分类号
学科分类号
摘要
In this work a neural indirect sliding mode control method for mobile robots is proposed. Due to the nonholonomic property and restricted mobility, the trajectory tracking of this system has been one of the research topics for the last ten years. The proposed control structure combines a feedback linearization model, based on a kinematics nominal model, and a practical design that combines an indirect neural adaptation technique with sliding mode control to compensate the dynamics of the robot. Using an online adaptation scheme, a neural sliding mode controller is used to approximate the equivalent control in the neighbourhood of the sliding manifold. A sliding control is appended to ensure that the neural sliding mode control can achieve a stable closed-loop system for the trajectory-tracking control of a mobile robot with unknown nonlinear dynamics. The proposed design simultaneously guarantees the stability of the adaptation of the neural nets and obtains suitable equivalent control when the parameters of the robot model are unknown in advance. The robust adaptive scheme is applied to a mobile robot and shown to be able to guarantee that the output tracking error will converge to zero.
引用
收藏
页码:931 / 944
页数:13
相关论文
共 50 条
  • [1] Sliding Mode Neuro Adaptive Control in Trajectory Tracking for Mobile Robots
    Rossomando, Francisco G.
    Soria, Carlos
    Carelli, Ricardo
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2014, 74 (3-4) : 931 - 944
  • [2] Sliding mode control for trajectory tracking of mobile robots
    Yu, Huacheng
    Sheng, Ning
    Ai, Zidong
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 13 - 17
  • [3] SLIDING MODE NEURO-ADAPTIVE CONTROLLER DESIGNED IN DISCRETE TIME FOR MOBILE ROBOTS
    Rossomando, Francisco G.
    Soria, Carlos
    Freire, Eduardo O.
    Carelli, Ricardo O.
    MECHATRONIC SYSTEMS AND CONTROL, 2018, 46 (02): : 55 - 63
  • [4] Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots
    Yang, JM
    Kim, JH
    IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1999, 15 (03): : 578 - 587
  • [5] Backstepping Trajectory Tracking Based on Fuzzy Sliding Mode Control for Differential Mobile Robots
    Xing Wu
    Peng Jin
    Ting Zou
    Zeyu Qi
    Haining Xiao
    Peihuang Lou
    Journal of Intelligent & Robotic Systems, 2019, 96 : 109 - 121
  • [6] Backstepping Trajectory Tracking Based on Fuzzy Sliding Mode Control for Differential Mobile Robots
    Wu, Xing
    Jin, Peng
    Zou, Ting
    Qi, Zeyu
    Xiao, Haining
    Lou, Peihuang
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2019, 96 (01) : 109 - 121
  • [7] Sliding Mode Control for Trajectory Tracking of a Non-holonomic Mobile Robot using Adaptive Neural Networks
    Rossomando, Francisco G.
    Soria, Carlos
    Carelli, Ricardo
    CONTROL ENGINEERING AND APPLIED INFORMATICS, 2014, 16 (01): : 12 - 21
  • [8] Application of Sliding Mode Trajectory Tracking Control Design for Two-Wheeled Mobile Robots
    Yang, Yankun
    Yan, Xinggang
    Sirlantzis, Konstantinos
    Howells, Gareth
    2019 NASA/ESA CONFERENCE ON ADAPTIVE HARDWARE AND SYSTEMS (AHS 2019), 2019, : 109 - 114
  • [9] Super-twisting sliding mode trajectory tracking adaptive control of wheeled mobile robots with disturbance observer
    Li, Zeyu
    Zhai, Junyong
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2022, 32 (18) : 9869 - 9881
  • [10] Sliding Mode Control: Implementation like PID for trajectory- tracking for Mobile Robots
    Proano, Pablo
    Capito, Linda
    Rosales, Andres
    Camacho, Oscar
    2015 ASIA-PACIFIC CONFERENCE ON COMPUTER-AIDED SYSTEM ENGINEERING - APCASE 2015, 2015, : 220 - 225