Multi-sensor image super-resolution with fuzzy cluster by using multi-scale and multi-view sparse coding for infrared image

被引:0
|
作者
Xiaomin Yang
Wei Wu
Kai Liu
Weilong Chen
Ping Zhang
Zhili Zhou
机构
[1] Sichuan University,College of Electronics and Information Engineering
[2] Sichuan University,School of Electrical Engineering and Information
[3] Sichuan Normal University,College of Movie and Media
[4] University of Electronic Science and Technology of China,Graphic Image and Signal Processing Applications Laboratory
[5] Nanjing University of Information Science and Technology,Jiangsu Engineering Center of Network Monitoring and School of Computer and Software
来源
Multimedia Tools and Applications | 2017年 / 76卷
关键词
Multi-sensor; Super-resolution; Sparse coding; Infrared image; Dictionary learning; Multiview representation; Fuzzy clustering theory;
D O I
暂无
中图分类号
学科分类号
摘要
Super-resolution (SR) methods are effective for generating a high-resolution image from a single low-resolution image. However, four problems are observed in existing SR methods. (1) They cannot reconstruct many details from a low-resolution infrared image because infrared images always lack detailed information. (2) They cannot extract the desired information from images because they do not consider that images naturally come at different scales in many cases. (3) They fail to reveal different physical structures of low-resolution patch because they extract features from a single view. (4) They fail to extract all the different patterns because they use only one dictionary to represent all patterns. To overcome these problems, we propose a novel SR method for infrared images. First, we combine the information of high-resolution visible light images and low-resolution infrared images to improve the resolution of infrared images. Second, we use multiscale patches instead of fixed-size patches to represent infrared images more accurately. Third, we use different feature vectors rather than a single feature to represent infrared images. Finally, we divide training patches into several clusters, and multiple dictionaries are learned for each cluster to provide each patch with a more accurate dictionary. In the proposed method, clustering information for low-resolution patches is learnt by using fuzzy clustering theory. Experiments validate that the proposed method yields better results in terms of quantization and visual perception than the state-of-the-art algorithms.
引用
收藏
页码:24871 / 24902
页数:31
相关论文
共 50 条
  • [31] LMSN:a lightweight multi-scale network for single image super-resolution
    Zou, Yiye
    Yang, Xiaomin
    Albertini, Marcelo Keese
    Hussain, Farhan
    MULTIMEDIA SYSTEMS, 2021, 27 (04) : 845 - 856
  • [32] An image super-resolution network based on multi-scale convolution fusion
    Yang, Xin
    Zhu, Yitian
    Guo, Yingqing
    Zhou, Dake
    VISUAL COMPUTER, 2022, 38 (12) : 4307 - 4317
  • [33] Feedback Multi-scale Residual Dense Network for image super-resolution
    Lin, Zhengchun
    Li, Siyuan
    Jiang, Yunzhi
    Wang, Jing
    Luo, Qingxing
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2022, 107
  • [34] Lightweight multi-scale residual networks with attention for image super-resolution
    Liu, Huan
    Cao, Feilong
    Wen, Chenglin
    Zhang, Qinghua
    KNOWLEDGE-BASED SYSTEMS, 2020, 203
  • [35] Image super-resolution network based on multi-scale adaptive attention
    Zhou Y.
    Pei S.
    Chen H.
    Xu S.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2024, 32 (06): : 843 - 856
  • [36] Lightweight Multi-Scale Asymmetric Attention Network for Image Super-Resolution
    Zhang, Min
    Wang, Huibin
    Zhang, Zhen
    Chen, Zhe
    Shen, Jie
    MICROMACHINES, 2022, 13 (01)
  • [37] Geometry-Aware Reference Synthesis for Multi-View Image Super-Resolution
    Cheng, Ri
    Sun, Yuqi
    Yan, Bo
    Tan, Weimin
    Ma, Chenxi
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 6083 - 6093
  • [38] Multi-Scale Image Super-Resolution via Hierarchical Filter Groups
    Gadipudi Amaranageswarao
    S. Deivalakshmi
    Applied Intelligence, 2022, 52 : 7550 - 7565
  • [39] Image super-resolution with multi-scale fractal residual attention network
    Song, Xiaogang
    Liu, Wanbo
    Liang, Li
    Shi, Weiwei
    Xie, Guo
    Lu, Xiaofeng
    Hei, Xinhong
    COMPUTERS & GRAPHICS-UK, 2023, 113 : 21 - 31
  • [40] LMSN:a lightweight multi-scale network for single image super-resolution
    Yiye Zou
    Xiaomin Yang
    Marcelo Keese Albertini
    Farhan Hussain
    Multimedia Systems, 2021, 27 : 845 - 856