Existence of solutions for nonlinear fractional differential equations with non-homogenous boundary conditions

被引:0
作者
Yanning An
Wenjun Liu
机构
[1] Nanjing University of Information Science and Technology,School of Mathematics and Statistics
来源
Journal of Applied Mathematics and Computing | 2020年 / 64卷
关键词
Fractional differential equations; Existence of solution; Conformable fractional calculus; Fixed point theorem; 26A33; 34A08; 34A12; 34B18; 47H10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the existence of solution to systems of nonlinear conformable fractional differential equations with non-homogenous Dirichlet, Neumann, Sturm–Liouville conditions or the periodic condition. We show that the system has at least one solution by using tube solution and Schauder fixed point theorem.
引用
收藏
页码:195 / 214
页数:19
相关论文
共 58 条
  • [1] Abdeljawad T(2015)On conformable fractional calculus J. Comput. Appl. Math. 279 57-66
  • [2] Ahmad B(2018)Existence of solutions for sequential fractional integro-differential equations and inclusions with nonlocal boundary conditions Appl. Math. Comput. 339 516-534
  • [3] Luca R(2018)Existence of solutions for a system of fractional differential equations with coupled nonlocal boundary conditions Fract. Calc. Appl. Anal. 21 423-441
  • [4] Ahmad B(2015)Fractional-order boundary value problem with Sturm–Liouville boundary conditions Electron. J. Differ. Equ. 29 10-38
  • [5] Luca R(2018)Bogoljub Stanković: contributions to generalized asymptotics and mechanics Bull. Cl. Sci. Math. Nat. Sci. Math. No. 43 27-133
  • [6] Anderson DR(2016)Monotone iterative method for fractional differential equations Electron. J. Differ. Equ. 6 8-35
  • [7] Avery RI(2015)Three-point boundary value problems for conformable fractional differential equations J. Funct. Spaces 706383 6-708
  • [8] Atanacković T(2017)Existence of solution to a local fractional nonlinear differential equation J. Comput. Appl. Math. 312 127-45
  • [9] Pilipović S(2018)Existence of periodic solutions for nonlinear implicit Hadamard’s fractional differential equations Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 112 25-1121
  • [10] Bai Z(2019)Existence of solutions for conformable fractional problems with nonlinear functional boundary conditions Malaya J. Mat. 7 700-19