A Three-Dimensional (3D) Semi-analytical Solution for the Ultimate End-Bearing Capacity of Rock-Socketed Shafts

被引:0
作者
Haohua Chen
Hehua Zhu
Lianyang Zhang
机构
[1] The University of Arizona,Department of Civil and Architectural Engineering and Mechanics
[2] Tongji University,Department of Geotechnical Engineering
来源
Rock Mechanics and Rock Engineering | 2022年 / 55卷
关键词
Rock-socketed shafts; End-bearing capacity; Method of characteristics; Disturbance; 3D strength; 3D geometry;
D O I
暂无
中图分类号
学科分类号
摘要
This study proposes a new semi-analytical solution for the ultimate end-bearing capacity of rock-socketed shafts with the consideration of three-dimensional (3D) strength and 3D geometry. The rock mass is assumed to be rigid-plastic and governed by a 3D Hoek–Brown (HB) criterion, and the method of characteristics is utilized to derive the governing equations in a cylindrical coordinate system. A Runge–Kutta-based iterative approach is adopted to solve the derived governing equations as an initial value problem via MATLAB. Eight test shafts with measured ultimate end-bearing capacity were analyzed to validate the proposed solution. Then, the proposed solution was compared with an analytical solution based on 2D HB criterion and an empirical factor for considering 3D effect, and a numerical simulation based on 2D HB criterion and 3D geometry to investigate the effects of 3D strength and 3D geometry. The results indicate that ignoring 3D strength and 3D geometry could significantly underestimate the ultimate end-bearing capacity of rock-socketed shafts. Finally, extensive parametric analyses were conducted with the proposed solution to explore the effects of rock mass properties, shaft dimensions, and the disturbance factor. The results show that the ultimate end-bearing capacity factor Nσ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N}_{\sigma }$$\end{document} (which is the ratio of the ultimate end-bearing capacity qu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${q}_{\mathrm{u}}$$\end{document} to the unconfined compressive strength of the intact rock σc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma }_{\mathrm{c}}$$\end{document}) of rock-socketed shafts increases with rock mass constant mi,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${m}_{\mathrm{i}},$$\end{document} geological strength index (GSI), the length of the shaft within soil layer Hs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H}_{\mathrm{s}}$$\end{document} and the length of the shaft within rock layer Hr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H}_{\mathrm{r}}$$\end{document}, while decreases with σc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma }_{\mathrm{c}}$$\end{document}. Also, the disturbance factor D significantly affects the ultimate end-bearing capacity factor Nσ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N}_{\sigma }$$\end{document}, especially for shafts in rock masses with a low GSI.
引用
收藏
页码:611 / 627
页数:16
相关论文
共 52 条
  • [1] Bolton MD(1993)Vertical bearing capacity factors for circular and strip footings on Mohr-Coulomb soil Can Geotech J 30 1024-1033
  • [2] Lau CK(2020)Solution of the ultimate bearing capacity at the tip of a pile in inclined rocks based on the Hoek–Brown criterion Int J Rock Mech Min Sci 125 104140-935
  • [3] Cai YQ(2021)Solution of the ultimate bearing capacity at the tip of a pile in anisotropic discontinuous rock mass based on the Hoek–Brown criterion Int J Geomech 21 04020254-1410
  • [4] Xu B(2021)A unified constitutive model for rock based on newly modified GZZ criterion Rock Mech Rock Eng 54 921-411
  • [5] Cao ZG(2021)Analytical solution for deep circular tunnels in rock with consideration of disturbed zone, 3D strength and large strain Rock Mech Rock Eng 54 1391-225
  • [6] Geng XY(1970)Experimental determination of the shape factors and the bearing capacity factors of sand Géotechnique 20 387-13
  • [7] Yuan ZG(2017)Ultimate bearing capacity of rock masses based on modified Mohr–Coulomb strength criterion Int J Rock Mech Min Sci 93 215-1111
  • [8] Cao ZG(2007)Poisson's ratio values for rocks Int J Rock Mech Min Sci 44 1-1186
  • [9] Xu B(2020)Pile end bearing capacity in rock mass using cavity expansion theory J Rock Mech Geotech Eng 12 1103-57
  • [10] Cai YQ(1997)Practical estimates of rock mass strength Int J Rock Mech Min Sci Geomech Abstr 34 1165-91