Strong- and weak-type estimate for Littlewood–Paley operators associated with Laplace–Bessel differential operator

被引:0
|
作者
Arash Ghorbanalizadeh
Monire Mikaeili Nia
机构
[1] Institute for Advanced Studies in Basic Sciences (IASBS),Department of Mathematics
来源
Banach Journal of Mathematical Analysis | 2022年 / 16卷
关键词
Laplace–Bessel differential operator; -Littlewood–Paley function; Vector-valued Calderón–Zygmund singular integral operator; Generalized shift operator; 42B25; 42B20;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we consider the generalized shift operator associated with the Laplace–Bessel differential operator and define the relevant Littlewood–Paley function operators g and Sγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\gamma }$$\end{document}. We then prove the weak (1, 1) and strong (p, p) boundedness of these operators in vector-valued Calderón–Zygmund approach in some appropriate homogeneous space.
引用
收藏
相关论文
共 50 条
  • [21] Maximal operators, Riesz transforms and Littlewood-Paley functions associated with Bessel operators on BMO
    Betancor, J. J.
    Chicco Ruiz, A.
    Farina, J. C.
    Rodriguez-Mesa, L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 363 (01) : 310 - 326
  • [22] On inversion of Bessel potentials associated with the Laplace-Bessel differential operator
    Aliev, IA
    Uyhan-Bayrakci, S
    ACTA MATHEMATICA HUNGARICA, 2002, 95 (1-2) : 125 - 145
  • [23] On Flett potentials associated with the Laplace–Bessel differential operator
    Melih Eryiğit
    Güldane Yıldız
    Simten Bayrakci
    Sinem Sezer
    Annals of Functional Analysis, 2023, 14
  • [24] Weak-Type Boundedness of the Hardy–Littlewood Maximal Operator on Weighted Lorentz Spaces
    Elona Agora
    Jorge Antezana
    María J. Carro
    Journal of Fourier Analysis and Applications, 2016, 22 : 1431 - 1439
  • [25] ON WEAK TYPE BOUNDS FOR A FRACTIONAL INTEGRAL ASSOCIATED WITH THE BESSEL DIFFERENTIAL OPERATOR
    Sarikaya, Mehmet Zeki
    Yildirim, Hueseyin
    TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (09): : 2535 - 2548
  • [26] Weak-Type Boundedness of the Hardy-Littlewood Maximal Operator on Weighted Lorentz Spaces
    Agora, Elona
    Antezana, Jorge
    Carro, Maria J.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2016, 22 (06) : 1431 - 1439
  • [27] Limiting weak-type behaviors for Riesz transforms and maximal operators in Bessel setting
    Hou, Xianming
    Wu, Huoxiong
    FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (03) : 535 - 550
  • [28] Sharp weak-type estimate for maximal operators associated to Cartesian families under an arithmetic condition
    Gauvan, Anthony
    TRANSACTIONS OF THE LONDON MATHEMATICAL SOCIETY, 2024, 11 (01):
  • [29] An Endpoint Weak-Type Estimate for Multilinear Calderón–Zygmund Operators
    Cody B. Stockdale
    Brett D. Wick
    Journal of Fourier Analysis and Applications, 2019, 25 : 2635 - 2652
  • [30] On a Weak Type Estimate for Sparse Operators of Strong Type
    G. A Karagulyan
    G. Mnatsakanyan
    Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2019, 54 : 216 - 221