On the group of unit-valued polynomial functions

被引:0
|
作者
Amr Ali Al-Maktry
机构
[1] Technische Universität Graz,Institute of Analysis and Number Theory (5010)
来源
Applicable Algebra in Engineering, Communication and Computing | 2023年 / 34卷
关键词
Finite commutative rings; Polynomial functions; Polynomial mappings; Unit-valued polynomial functions; Permutation polynomials; Polynomial permutations; Dual numbers; Semidirect product;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a finite commutative ring. The set F(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{F}}}(R)$$\end{document} of polynomial functions on R is a finite commutative ring with pointwise operations. Its group of units F(R)×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{F}}}(R)^\times $$\end{document} is just the set of all unit-valued polynomial functions. We investigate polynomial permutations on R[x]/(x2)=R[α]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R[x]/(x^2)=R[\alpha ]$$\end{document}, the ring of dual numbers over R, and show that the group PR(R[α])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{P}}_{R}(R[\alpha ])$$\end{document}, consisting of those polynomial permutations of R[α]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R[\alpha ]$$\end{document} represented by polynomials in R[x], is embedded in a semidirect product of F(R)×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{F}}}(R)^\times $$\end{document} by the group P(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{P}}(R)$$\end{document} of polynomial permutations on R. In particular, when R=Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R={\mathbb{F}}_q$$\end{document}, we prove that PFq(Fq[α])≅P(Fq)⋉θF(Fq)×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{P}}_{{\mathbb{F}}_q}({\mathbb{F}}_q[\alpha ])\cong {\mathcal{P}}({\mathbb{F}}_q) \ltimes _\theta {{\mathcal{F}}}({\mathbb{F}}_q)^\times $$\end{document}. Furthermore, we count unit-valued polynomial functions on the ring of integers modulo pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p^n}$$\end{document} and obtain canonical representations for these functions.
引用
收藏
页码:521 / 537
页数:16
相关论文
共 46 条
  • [21] Polynomial functions over finite commutative rings
    Bulyovszky, Balazs
    Horvath, Gabor
    THEORETICAL COMPUTER SCIENCE, 2017, 703 : 76 - 86
  • [22] ADAPTIVE PREDISTORTION LINEARISER USING POLYNOMIAL FUNCTIONS
    GHADERI, M
    KUMAR, S
    DODDS, DE
    IEE PROCEEDINGS-COMMUNICATIONS, 1994, 141 (02): : 49 - 55
  • [23] Some Remarks About Polynomial Aggregation Functions
    Massanet, Sebastia
    Vicente Riera, Juan
    Torrens, Joan
    NEW TRENDS IN AGGREGATION THEORY, 2019, 981 : 47 - 59
  • [24] On types of degenerate critical points of real polynomial functions
    Guo, Feng
    Tien-Son Pham
    JOURNAL OF SYMBOLIC COMPUTATION, 2020, 99 : 108 - 126
  • [25] On a new class of functional equations satisfied by polynomial functions
    Nadhomi, Timothy
    Okeke, Chisom Prince
    Sablik, Maciej
    Szostok, Tomasz
    AEQUATIONES MATHEMATICAE, 2021, 95 (06) : 1095 - 1117
  • [26] On a new class of functional equations satisfied by polynomial functions
    Timothy Nadhomi
    Chisom Prince Okeke
    Maciej Sablik
    Tomasz Szostok
    Aequationes mathematicae, 2021, 95 : 1095 - 1117
  • [27] Characterizing locally polynomial functions on convex subsetsof linear spaces
    Okeke, Chisom Prince
    Sablik, Maciej
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2024, 105 (1-2): : 233 - 257
  • [28] Orthogonal polynomials on the unit circle via a polynomial mapping on the real line
    Petronilho, J.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 216 (01) : 98 - 127
  • [29] Further results on a new class of functional equations satisfied by polynomial functions
    Okeke, Chisom Prince
    RESULTS IN MATHEMATICS, 2023, 78 (03)
  • [30] Polynomial functions and endomorphism near-rings on certain linear groups
    Aichinger, E
    Mayr, P
    COMMUNICATIONS IN ALGEBRA, 2003, 31 (11) : 5627 - 5651