Paired-domination number of claw-free odd-regular graphs

被引:0
作者
Wei Yang
Xinhui An
Baoyindureng Wu
机构
[1] Xinjiang University,College of Mathematics and System Sciences
来源
Journal of Combinatorial Optimization | 2017年 / 33卷
关键词
Claw-free graphs; Cubic graphs; Domination; Paired-domination number; Regular graphs;
D O I
暂无
中图分类号
学科分类号
摘要
A paired-dominating set of a graph G is a dominating set of vertices whose induced subgraph has a perfect matching, while the paired-domination number is the minimum cardinality of a paired-dominating set in the graph, denoted by γpr(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{pr}(G)$$\end{document}. Let G be a connected {K1,3,K4-e}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{K_{1,3}, K_{4}-e\}$$\end{document}-free cubic graph of order n. We show that γpr(G)≤10n+627\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{pr}(G)\le \frac{10n+6}{27}$$\end{document} if G is C4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{4}$$\end{document}-free and that γpr(G)≤n3+n+69(⌈34(go+1)⌉+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{pr}(G)\le \frac{n}{3}+\frac{n+6}{9(\lceil \frac{3}{4}(g_o+1)\rceil +1)}$$\end{document} if G is {C4,C6,C10,…,C2go}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{C_{4}, C_{6}, C_{10}, \ldots , C_{2g_o}\}$$\end{document}-free for an odd integer go≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_o\ge 3$$\end{document}; the extremal graphs are characterized; we also show that if G is a 2 -connected, γpr(G)=n3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{pr}(G) = \frac{n}{3} $$\end{document}. Furthermore, if G is a connected (2k+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2k+1)$$\end{document}-regular {K1,3,K4-e}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{K_{1,3}, K_4-e\}$$\end{document}-free graph of order n, then γpr(G)≤nk+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{pr}(G)\le \frac{n}{k+1} $$\end{document}, with equality if and only if G=L(F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=L(F)$$\end{document}, where F≅K1,2k+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F\cong K_{1, 2k+2}$$\end{document}, or k is even and F≅Kk+1,k+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F\cong K_{k+1,k+2}$$\end{document}.
引用
收藏
页码:1266 / 1275
页数:9
相关论文
共 38 条
  • [1] Biedl T(2004)Tight bounds on maximal and maximum matchings Discrete Math 285 7-15
  • [2] Demaine ED(2007)Paired-domination on interval and circular-arc graphs Discrete Appl Math 155 2077-2086
  • [3] Duncan CA(2014)Paired domination in graphs: a survey and recent results Util Math 94 101-166
  • [4] Fleischer R(2007)Paired-domination in generalized claw-free graphs J Comb Optim 14 1-7
  • [5] Kobourov SG(2004)Paired-domination in claw-free cubic graphs Graphs Combin 20 447-456
  • [6] Cheng TCE(2008)Bounds on total domination in claw-free cubic graphs Discrete Math 308 3491-3507
  • [7] Kang LY(1998)Paired-domination Discuss Math Graph Theorey 18 199-206
  • [8] Ng CT(2009)A characterization of cubic graphs with paired-domination number three-fifths their order Graphs Combin 25 675-692
  • [9] Desormeaux WJ(1995)Paired-domination and the paired-domatic number Congr Numer 109 65-72
  • [10] Henning MA(1998)Paired-domination in graphs Networks 32 199-206