Variable-coefficient symbolic computation approach for finding multiple rogue wave solutions of nonlinear system with variable coefficients

被引:0
|
作者
Jian-Guo Liu
Wen-Hui Zhu
Yan He
机构
[1] Jiangxi University of Chinese Medicine,College of Computer
[2] Beijing University of Posts and Telecommunications,School of science
[3] Nanchang Institute of Science and Technology,Institute of artificial intelligence
来源
Zeitschrift für angewandte Mathematik und Physik | 2021年 / 72卷
关键词
Variable-coefficient symbolic computation approach; Rogue wave; Variable-coefficient Kadomtsev–Petviashvili equation; 35C08; 68M07; 33F10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a variable-coefficient symbolic computation approach is proposed to solve the multiple rogue wave solutions of nonlinear equation with variable coefficients. As an application, a (2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2+1$$\end{document})-dimensional variable-coefficient Kadomtsev–Petviashvili equation is investigated. The multiple rogue wave solutions are obtained and their dynamic features are shown in some 3D and contour plots.
引用
收藏
相关论文
共 14 条
  • [1] Variable-coefficient symbolic computation approach for finding multiple rogue wave solutions of nonlinear system with variable coefficients
    Liu, Jian-Guo
    Zhu, Wen-Hui
    He, Yan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (04):
  • [2] Multiple rogue wave, breather wave and interaction solutions of a generalized (3 + 1)-dimensional variable-coefficient nonlinear wave equation
    Jian-Guo Liu
    Wen-Hui Zhu
    Nonlinear Dynamics, 2021, 103 : 1841 - 1850
  • [3] Multiple rogue wave, breather wave and interaction solutions of a generalized (3+1)-dimensional variable-coefficient nonlinear wave equation
    Liu, Jian-Guo
    Zhu, Wen-Hui
    NONLINEAR DYNAMICS, 2021, 103 (02) : 1841 - 1850
  • [4] Rogue wave solutions of the nonlinear Schrodinger equation with variable coefficients
    Liu, Changfu
    Li, Yan Yan
    Gao, Meiping
    Wang, Zeping
    Dai, Zhengde
    Wang, Chuanjian
    PRAMANA-JOURNAL OF PHYSICS, 2015, 85 (06): : 1063 - 1072
  • [5] Rogue wave solutions of the nonlinear Schrödinger equation with variable coefficients
    CHANGFU LIU
    YAN YAN LI
    MEIPING GAO
    ZEPING WANG
    ZHENGDE DAI
    CHUANJIAN WANG
    Pramana, 2015, 85 : 1063 - 1072
  • [6] Multiple rogue wave solutions of a generalized (3+1)-dimensional variable-coefficient Kadomtsev--Petviashvili equation
    Li, Kun-Qiong
    OPEN PHYSICS, 2022, 20 (01): : 452 - 457
  • [7] Rogue wave solutions for the coupled cubic-quintic nonlinear Schrodinger equations with variable coefficients
    Qi, Feng-Hua
    Xu, Xiao-Ge
    Wang, Pan
    APPLIED MATHEMATICS LETTERS, 2016, 54 : 60 - 65
  • [8] SOLITARY AND LUMP WAVES INTERACTION IN VARIABLE-COEFFICIENT NONLINEAR EVOLUTION EQUATION BY A MODIFIED ANSATZ WITH VARIABLE COEFFICIENTS
    Liu, Jian-Guo
    Wazwaz, Abdul-Majid
    Zhu, Wen-Hui
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2022, 12 (02): : 517 - 532
  • [9] Localized wave solutions to coupled variable-coefficient fourth-order nonlinear Schrödinger equations
    Song, N.
    Guo, M. M.
    Liu, R.
    Ma, W. X.
    MODERN PHYSICS LETTERS A, 2024, 39 (09)
  • [10] Darboux transformation and rogue wave solutions for the variable-coefficients coupled Hirota equations
    Wang, Xin
    Liu, Chong
    Wang, Lei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 449 (02) : 1534 - 1552