Quadrangulations of a Polygon with Spirality

被引:0
|
作者
Fumiya Hidaka
Naoki Matsumoto
Atsuhiro Nakamoto
机构
[1] Yokohama National University,Graduate School of Environment and Information Science
[2] Keio University,Research Institute for Digital Media and Content
[3] Yokohama National University,Faculty of Environment and Information Science
来源
Graphs and Combinatorics | 2021年 / 37卷
关键词
Quadrangulation; Polygon; Steiner point; Geometric graph;
D O I
暂无
中图分类号
学科分类号
摘要
Given an n-sided polygon P on the plane with n≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 4$$\end{document}, a quadrangulation of P is a geometric plane graph such that the boundary of the outer face is P and that each finite face is quadrilateral. Clearly, P is quadrangulatable (i.e., admits a quadrangulation) only if n is even, but there is a non-quadrangulatable even-sided polygon. Ramaswami et al. [Comp Geom 9:257–276, (1998)] proved that every n-sided polygon P with n≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 4$$\end{document} even admits a quadrangulation with at most ⌊n-24⌋\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lfloor \frac{n-2}{4} \rfloor$$\end{document} Steiner points, where a Steiner point for P is an auxiliary point which can be put in any position in the interior of P. In this paper, introducing the notion of the spirality of P to control a structure of P (independent of n), we estimate the number of Steiner points to quadrangulate P.
引用
收藏
页码:1905 / 1912
页数:7
相关论文
共 50 条
  • [41] Hydrodynamic spirality in geodynamo models
    M. Yu. Reshetnyak
    B. Steffen
    Doklady Earth Sciences, 2006, 409 : 739 - 743
  • [42] Spirality and optimal orthogonal drawings
    Di Battista, G
    Liotta, G
    Vargiu, F
    SIAM JOURNAL ON COMPUTING, 1998, 27 (06) : 1764 - 1811
  • [44] MINIMAL QUADRANGULATIONS OF NONORIENTABLE SURFACES
    HARTSFIELD, N
    RINGEL, G
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1989, 50 (02) : 186 - 195
  • [45] Minor Relations for Quadrangulations on the Sphere
    Sheng Bau
    Naoki Matsumoto
    Atsuhiro Nakamoto
    Lijuan Zheng
    Graphs and Combinatorics, 2015, 31 : 2029 - 2036
  • [46] Separating polygons in quadrangulations of the sphere
    Bau, Sheng
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2019, 62 (02): : 123 - 131
  • [47] Colouring quadrangulations of projective spaces
    Kaiser, Tomas
    Stehlik, Matej
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2015, 113 : 1 - 17
  • [48] The F model on dynamical quadrangulations
    Weigel, M
    Janke, W
    NUCLEAR PHYSICS B, 2005, 719 (03) : 312 - 346
  • [49] Spanning quadrangulations of triangulated surfaces
    Kundgen, Andre
    Thomassen, Carsten
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2017, 87 (02): : 357 - 368
  • [50] Matching extension in quadrangulations of the torus
    Aldred, R. E. L.
    Li, Qiuli
    Plummer, Michael D.
    Zhang, Heping
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2013, 57 : 217 - 233