Quadrangulations of a Polygon with Spirality

被引:0
|
作者
Fumiya Hidaka
Naoki Matsumoto
Atsuhiro Nakamoto
机构
[1] Yokohama National University,Graduate School of Environment and Information Science
[2] Keio University,Research Institute for Digital Media and Content
[3] Yokohama National University,Faculty of Environment and Information Science
来源
Graphs and Combinatorics | 2021年 / 37卷
关键词
Quadrangulation; Polygon; Steiner point; Geometric graph;
D O I
暂无
中图分类号
学科分类号
摘要
Given an n-sided polygon P on the plane with n≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 4$$\end{document}, a quadrangulation of P is a geometric plane graph such that the boundary of the outer face is P and that each finite face is quadrilateral. Clearly, P is quadrangulatable (i.e., admits a quadrangulation) only if n is even, but there is a non-quadrangulatable even-sided polygon. Ramaswami et al. [Comp Geom 9:257–276, (1998)] proved that every n-sided polygon P with n≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 4$$\end{document} even admits a quadrangulation with at most ⌊n-24⌋\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lfloor \frac{n-2}{4} \rfloor$$\end{document} Steiner points, where a Steiner point for P is an auxiliary point which can be put in any position in the interior of P. In this paper, introducing the notion of the spirality of P to control a structure of P (independent of n), we estimate the number of Steiner points to quadrangulate P.
引用
收藏
页码:1905 / 1912
页数:7
相关论文
共 50 条
  • [31] ASSOCIATION OF COCONUT FOLIAR SPIRALITY WITH LATITUDE
    DAVIS, TA
    DAVIS, B
    MATHEMATICAL MODELLING, 1987, 8 : 730 - 733
  • [32] Hydrodynamic spirality in geodynamo models
    Reshetnyak, M. Yu.
    Steffen, B.
    DOKLADY EARTH SCIENCES, 2006, 409 (05) : 739 - 743
  • [33] Quadrangulations of Animation Sequence
    Du, Ping
    Tu, Changhe
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2017, 31 (11)
  • [34] Computing convex quadrangulations
    Schiffer, T.
    Aurenhammer, F.
    Demuth, M.
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (4-5) : 648 - 656
  • [35] MINIMAL QUADRANGULATIONS OF ORIENTABLE SURFACES
    HARTSFIELD, N
    RINGEL, G
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 46 (01) : 84 - 95
  • [36] SPIRALITY INVERSION IN NUCLEAR REACTIONS
    KLEPIKOV, NP
    SMORODINSKII, YA
    SOVIET PHYSICS JETP-USSR, 1963, 16 (06): : 1536 - 1539
  • [37] The disk dynamo with fluctuating spirality
    Sokolov, DD
    ASTRONOMICHESKII ZHURNAL, 1997, 74 (01): : 75 - 79
  • [38] Generating biconnected plane quadrangulations
    Li, ZJ
    Nakano, SI
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2003, E86D (04) : 698 - 703
  • [39] The width of quadrangulations of the projective plane
    Esperet, Louis
    Stehlik, Matej
    JOURNAL OF GRAPH THEORY, 2018, 89 (01) : 76 - 88
  • [40] SPIRALITY OF MUSCLE LAYERS OF INTESTINE
    MCKIRDY, HC
    MACMILLAN, J
    EXPERIENTIA, 1971, 27 (07): : 790 - +