Given an n-sided polygon P on the plane with n≥4\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n \ge 4$$\end{document}, a quadrangulation of P is a geometric plane graph such that the boundary of the outer face is P and that each finite face is quadrilateral. Clearly, P is quadrangulatable (i.e., admits a quadrangulation) only if n is even, but there is a non-quadrangulatable even-sided polygon. Ramaswami et al. [Comp Geom 9:257–276, (1998)] proved that every n-sided polygon P with n≥4\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n \ge 4$$\end{document} even admits a quadrangulation with at most ⌊n-24⌋\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lfloor \frac{n-2}{4} \rfloor$$\end{document} Steiner points, where a Steiner point for P is an auxiliary point which can be put in any position in the interior of P. In this paper, introducing the notion of the spirality of P to control a structure of P (independent of n), we estimate the number of Steiner points to quadrangulate P.