Quadrangulations of a Polygon with Spirality

被引:0
|
作者
Fumiya Hidaka
Naoki Matsumoto
Atsuhiro Nakamoto
机构
[1] Yokohama National University,Graduate School of Environment and Information Science
[2] Keio University,Research Institute for Digital Media and Content
[3] Yokohama National University,Faculty of Environment and Information Science
来源
Graphs and Combinatorics | 2021年 / 37卷
关键词
Quadrangulation; Polygon; Steiner point; Geometric graph;
D O I
暂无
中图分类号
学科分类号
摘要
Given an n-sided polygon P on the plane with n≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 4$$\end{document}, a quadrangulation of P is a geometric plane graph such that the boundary of the outer face is P and that each finite face is quadrilateral. Clearly, P is quadrangulatable (i.e., admits a quadrangulation) only if n is even, but there is a non-quadrangulatable even-sided polygon. Ramaswami et al. [Comp Geom 9:257–276, (1998)] proved that every n-sided polygon P with n≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 4$$\end{document} even admits a quadrangulation with at most ⌊n-24⌋\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lfloor \frac{n-2}{4} \rfloor$$\end{document} Steiner points, where a Steiner point for P is an auxiliary point which can be put in any position in the interior of P. In this paper, introducing the notion of the spirality of P to control a structure of P (independent of n), we estimate the number of Steiner points to quadrangulate P.
引用
收藏
页码:1905 / 1912
页数:7
相关论文
共 50 条
  • [1] Quadrangulations of a Polygon with Spirality
    Hidaka, Fumiya
    Matsumoto, Naoki
    Nakamoto, Atsuhiro
    GRAPHS AND COMBINATORICS, 2021, 37 (05) : 1905 - 1912
  • [2] Rhombus Tilings of an Even-Sided Polygon and Quadrangulations on the Projective Plane
    Hamanaka, Hiroaki
    Nakamoto, Atsuhiro
    Suzuki, Yusuke
    GRAPHS AND COMBINATORICS, 2020, 36 (03) : 561 - 571
  • [3] Rhombus Tilings of an Even-Sided Polygon and Quadrangulations on the Projective Plane
    Hiroaki Hamanaka
    Atsuhiro Nakamoto
    Yusuke Suzuki
    Graphs and Combinatorics, 2020, 36 : 561 - 571
  • [4] Exploring Quadrangulations
    Peng, Chi-Han
    Barton, Michael
    Jiang, Caigui
    Wonka, Peter
    ACM TRANSACTIONS ON GRAPHICS, 2014, 33 (01):
  • [5] SPIRALITY OF KNITTED FABRICS .1. THE NATURE OF SPIRALITY
    DEARAUJO, MD
    SMITH, GW
    TEXTILE RESEARCH JOURNAL, 1989, 59 (05) : 247 - 256
  • [6] SPIRALITY IN CITRUS
    不详
    BOTANICAL GAZETTE, 1953, 114 (03): : 350 - 352
  • [7] THE SPIRALITY OF THE DECAY PRODUCT
    FUJII, K
    IWATA, K
    PROGRESS OF THEORETICAL PHYSICS, 1958, 19 (05): : 589 - 591
  • [8] Spirality of coronal rays
    Ajabshirizadeh, A
    Filippov, B
    SOLAR PHYSICS, 2004, 221 (02) : 283 - 295
  • [9] NOTE ON COLORED QUADRANGULATIONS
    BERMAN, KA
    DISCRETE MATHEMATICS, 1980, 29 (02) : 215 - 217
  • [10] Spirality of Coronal Rays
    A. Ajabshirizadeh
    B. Filippov
    Solar Physics, 2004, 221 : 283 - 295