Common fixed point theorems for rational FR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathcal{R}}$\end{document}-contractive pairs of mappings with applications

被引:0
作者
Mian Bahadur Zada
Muhammad Sarwar
机构
[1] University of Malakand,Department of Mathematics
关键词
Fixed points; Binary relation; -contraction; Non-linear matrix equations; 47H09; 54H25;
D O I
10.1186/s13660-018-1952-z
中图分类号
学科分类号
摘要
In this paper, we study the existence of solution for the following non-linear matrix equations: X=Q+∑i=1nAi∗XAi−∑i=1nBi∗XBi,X=Q+∑i=1nAi∗ϒ(X)Ai,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned}& X=Q+ \sum^{n}_{i=1} A^{*}_{i} X A_{i}- \sum ^{n}_{i=1} B^{*}_{i} X B_{i}, \\& X=Q+ \sum^{n}_{i=1} A^{*}_{i} \varUpsilon (X) A_{i}, \end{aligned}$$ \end{document} where Q is a Hermitian positive definite matrix, Ai\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A_{i}$\end{document}, Bi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B_{i}$\end{document} are arbitrary m×m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m\times m$\end{document} matrices and ϒ:H(m)→P(m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varUpsilon: \mathcal{H}(m)\rightarrow \mathcal{P}(m)$\end{document} is an order preserving continuous map such that ϒ(0)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varUpsilon (0)=0$\end{document}. To this aim, we establish several common fixed point theorems for two mapping satisfying a rational FR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{\mathcal{R}}$\end{document}-contractive condition, where R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}$\end{document} is a binary relation.
引用
收藏
相关论文
共 50 条