共 30 条
- [21] Adaptive l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_1$$\end{document}-regularization for short-selling control in portfolio selection Computational Optimization and Applications, 2019, 72 (2) : 457 - 478
- [22] The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\user1{\mathcal{U}\mathcal{V}}} $$\end{document}-Decomposition on a Class of D.C. Functions and Optimality Conditions Acta Mathematicae Applicatae Sinica, English Series, 2007, 23 (1): : 29 - 38
- [23] A new accelerated proximal boosting machine with convergence rate O(1/t2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(1/t^2)$$\end{document} Journal of Applied Mathematics and Computing, 2022, 68 (6) : 3747 - 3766
- [24] The PPA-based numerical algorithm with the O(1/t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(1/t)$$\end{document} convergence rate for variant variational inequalities Optimization Letters, 2014, 8 (4) : 1487 - 1500
- [25] Nonparametric estimation of P(X<Y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}(X<Y)$$\end{document} from noisy data samples with non-standard error distributions Metrika, 2024, 87 (8) : 973 - 1006
- [26] On the O(1/t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(1/t)$\end{document} convergence rate of the alternating direction method with LQP regularization for solving structured variational inequality problems Journal of Inequalities and Applications, 2016 (1)
- [27] O(1/k2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(1/k^2)$$\end{document} convergence rates of (dual-primal) balanced augmented Lagrangian methods for linearly constrained convex programming Numerical Algorithms, 2025, 98 (1) : 325 - 345
- [28] The maximal positive definite solution of the nonlinear matrix equation X+A∗X-1A+B∗X-1B=I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X + A^{*}X^{-1}A+B^{*}X^{-1}B = I $$\end{document} Mathematical Sciences, 2023, 17 (4) : 337 - 350
- [29] On convergence of three iterative methods for solving of the matrix equation X+A∗X-1A+B∗X-1B=Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X+A^{*}X^{-1}A+B^{*}X^{-1}B=Q$$\end{document} Computational and Applied Mathematics, 2017, 36 (1) : 79 - 87
- [30] Strong stationarity for non-smooth control problems with fractional semi-linear elliptic equations in dimension N≤3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\le 3$$\end{document}Strong stationarity for non-smooth control problems...C. Kenne et al. Fractional Calculus and Applied Analysis, 2025, 28 (2) : 622 - 655