共 71 条
[1]
Alistarh D(2017)QSGD: communication-efficient SGD via gradient quantization and encoding Adv. Neural Inf. Process. Syst. 30 1709-1720
[2]
Grubic D(2018)The convergence of sparsified gradient methods Adv. Neural Inf. Process. Syst. 31 5977-5987
[3]
Li J(2017)On perturbed proximal gradient algorithms J. Mach. Learn. Res. 18 310-342
[4]
Tomioka R(2011)LIBSVM: a library for support vector machines ACM Trans. Intell. Syst. Technol. 2 1-27
[5]
Vojnovic M(2014)SAGA: a fast incremental gradient method with support for non-strongly convex composite objectives Adv. Neural Inf. Process. Syst. 27 1646-1654
[6]
Alistarh D(2013)Stochastic first- and zeroth-order methods for nonconvex stochastic programming SIAM J. Optim. 23 2341-2368
[7]
Hoefler T(2020)Stochastic quasi-gradient methods: variance reduction via Jacobian sketching Math. Program. 188 135-192
[8]
Johansson M(2019)Convergence rates for deterministic and stochastic subgradient methods without Lipschitz continuity SIAM J. Optim. 29 1350-1365
[9]
Konstantinov N(2018)SEGA: variance reduction via gradient sketching Adv. Neural Inf. Process. Syst. 31 2086-2097
[10]
Khirirat S(2015)Variance reduced stochastic gradient descent with neighbors Adv. Neural Inf. Process. Syst. 28 2305-2313