Functional Approach of Large Deviations in General Spaces

被引:0
|
作者
Henri Comman
机构
[1] University of Santiago de Chile,Department of Mathematics
来源
Journal of Theoretical Probability | 2005年 / 18卷
关键词
Large deviations; converse Varadhan’s theorem problem;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a topological space, (μ α) a net of Borel probability measures on X, and (tα) a net in ]0,∞[ converging to 0. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal A$$\end{document} be a set of continuous functions such that for all x ∈X that can be suitably distinguished by some continuous functions from any closed set not containing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x, \cal A$$\end{document} contains such a distinguishing function. Assuming that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda(h) = \log \lim\left(\int_{X} e^{h(x)/t_{\alpha}} \mu _{\alpha}(dx)\right)^{t_{\alpha}}$$\end{document} exists for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h \in \cal A$$\end{document}, we give a sufficient condition in order that (μ α) satisfies a large deviation principle with powers (tα) and not necessary tight rate function. When X is completely regular (not necessary Hausdorff), this condition is also necessary, and so strictly weaker than exponential tightness; this allows us to strengthen Bryc’s theorem in various ways. We give the general form of a rate function in terms of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal A$$\end{document}. A Prohorov-type theorem with a weaker notion than exponential tightness is obtained, which improves known results.
引用
收藏
页码:187 / 207
页数:20
相关论文
共 50 条
  • [31] Sizing Storage for Reliable Renewable Integration: A Large Deviations Approach
    Deulkar, Vivek
    Nair, Jayakrishnan
    Kulkarni, Ankur A.
    JOURNAL OF ENERGY STORAGE, 2020, 30 (30)
  • [32] A new approach to large deviations for the Ginzburg-Landau model
    Banerjee, Sayan
    Budhiraja, Amarjit
    Perlmutter, Michael
    ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25
  • [33] Large-Deviations/Thermodynamic approach to percolation on the complete graph
    Biskup, Marek
    Chayes, Lincoln
    Smith, S. A.
    RANDOM STRUCTURES & ALGORITHMS, 2007, 31 (03) : 354 - 370
  • [34] Inertial Manifold and Large Deviations Approach to Reduced PDE Dynamics
    Cardin, Franco
    Favretti, Marco
    Lovison, Alberto
    JOURNAL OF STATISTICAL PHYSICS, 2017, 168 (05) : 1000 - 1015
  • [35] A deep learning functional estimator of optimal dynamics for sampling large deviations
    Oakes, Tom H. E.
    Moss, Adam
    Garrahan, Juan P.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2020, 1 (03):
  • [36] A functional large deviations principle for quadratic forms of Gaussian stationary processes
    Gamboa, F
    Rouault, A
    Zani, M
    STATISTICS & PROBABILITY LETTERS, 1999, 43 (03) : 299 - 308
  • [37] The effect of memory on functional large deviations of infinite moving average processes
    Ghosh, Souvik
    Samorodnitsky, Gennady
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (02) : 534 - 561
  • [38] Quadratic and rate-independent limits for a large-deviations functional
    Giovanni A. Bonaschi
    Mark A. Peletier
    Continuum Mechanics and Thermodynamics, 2016, 28 : 1191 - 1219
  • [39] Quadratic and rate-independent limits for a large-deviations functional
    Bonaschi, Giovanni A.
    Peletier, Mark A.
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2016, 28 (04) : 1191 - 1219
  • [40] Sample path large deviations for diffusion processes on configuration spaces over a Riemannian manifold
    Röckner, M
    Zhang, TS
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2004, 40 (02) : 385 - 427