DeepPricing: pricing convertible bonds based on financial time-series generative adversarial networks

被引:0
|
作者
Xiaoyu Tan
Zili Zhang
Xuejun Zhao
Shuyi Wang
机构
[1] Peking University,Guanghua School of Management
[2] Harvest Fund Management,Department of Mathematics
[3] Zhejiang University,undefined
来源
Financial Innovation | / 8卷
关键词
Convertible bonds; Generative adversarial network; Time-series simulation; Pricing; Investment strategy; Artificial intelligence; G1; G12; C5; C6; C63;
D O I
暂无
中图分类号
学科分类号
摘要
Convertible bonds are an important segment of the corporate bond market, however, as hybrid instruments, convertible bonds are difficult to value because they depend on variables related to the underlying stock, the fixed-income part, and the interaction between these components. Besides, embedded options, such as conversion, call, and put provisions are often restricted to certain periods, may vary over time, and are subject to additional path-dependent features of the state variables. Moreover, the most challenging problem in convertible bond valuation is the underlying stock return process modeling as it retains various complex statistical properties. In this paper, we propose DeepPricing, a novel data-driven convertible bonds pricing model, which is inspired by the recent success of generative adversarial networks (GAN), to address the above challenges. The method introduces a new financial time-series generative adversarial networks (FinGAN), which is able to reproduce risk-neutral stock return process that retains the unique statistical properties such as the fat-tailed distributions, the long-range dependence, and the asymmetry structure etc., and then transit to its risk-neutral distribution. Thus it is more flexible and accurate to capture the dynamics of the underlying stock return process and keep the rich set of real-world convertible bond specifications compared with previous model-driven models. The experiments on the Chinese convertible bond market demonstrate the effectiveness of DeepPricing model. Compared with the convertible bond market prices, our model has a better convertible bonds pricing performance than both model-driven models, i.e. Black-Scholes, the constant elasticity of variance, GARCH, and the state-of-the-art GAN-based models, i.e. FinGAN-MLP, FinGAN-LSTM. Moreover, our model has a better fitting capacity for higher-volatility convertible bonds and the overall convertible bond market implied volatility smirk, especially for equity-liked convertible bonds, convertible bonds trading in the bull market, and out-of-the-money convertible bonds. Furthermore, the Long-Short and Long-Only investment strategies based on our model earn a significant annualized return with 41.16% and 31.06%, respectively, for the equally-weighted portfolio during the sample period.
引用
收藏
相关论文
共 50 条
  • [41] Artistic characterization of AI painting based on generative adversarial networks
    Lu W.
    Qi R.
    Li Y.
    Applied Mathematics and Nonlinear Sciences, 2024, 9 (01)
  • [42] Image Translation with Attention Mechanism based on Generative Adversarial Networks
    Lu, Yu
    Liu, Ju
    Zhao, Xueyin
    Liu, Xiaoxi
    Chen, Weiqiang
    Gao, Xuesong
    IEEE INFOCOM 2020 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2020, : 364 - 369
  • [43] License Plate Image Reconstruction Based on Generative Adversarial Networks
    Lin, Mianfen
    Liu, Liangxin
    Wang, Fei
    Li, Jingcong
    Pan, Jiahui
    REMOTE SENSING, 2021, 13 (15)
  • [44] Generative adversarial networks based regularized image reconstruction for PET
    Xie, Zhaoheng
    Baikejiang, Reheman
    Gong, Kuang
    Zhang, Xuezhu
    Qi, Jinyi
    15TH INTERNATIONAL MEETING ON FULLY THREE-DIMENSIONAL IMAGE RECONSTRUCTION IN RADIOLOGY AND NUCLEAR MEDICINE, 2019, 11072
  • [45] Seismic inverse modeling method based on generative adversarial networks
    Xie, Pengfei
    Hou, Jiagen
    Yin, Yanshu
    Chen, Zhangxin
    Chen, Mei
    Wang, Lixin
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 215
  • [46] Crack Detection Based on Generative Adversarial Networks and Deep Learning
    Gongfa Chen
    Shuai Teng
    Mansheng Lin
    Xiaomei Yang
    Xiaoli Sun
    KSCE Journal of Civil Engineering, 2022, 26 : 1803 - 1816
  • [47] A Helium Speech Correction Method Based on Generative Adversarial Networks
    Li, Hongjun
    Chen, Yuxiang
    Ji, Hongwei
    Zhang, Shibing
    BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (11)
  • [48] A Reconfigurable Parallelization of Generative Adversarial Networks based on Array Processor
    Xie, Xiaoyan
    Chai, Miaomiao
    Du, Zhuolin
    Yang, Kun
    Yin, Shaorun
    2021 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2021, : 127 - 132
  • [49] Road Extraction with UAV Images Based on Generative Adversarial Networks
    He L.
    Li Y.-X.
    Peng B.
    Wu H.-P.
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2019, 48 (04): : 580 - 585
  • [50] Application of a Deep Generative Model for Diversified Video Subtitles Based on Generative Adversarial Networks
    Shen, Lingzhi
    2023 3RD ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS TECHNOLOGY AND COMPUTER SCIENCE, ACCTCS, 2023, : 176 - 181