DeepPricing: pricing convertible bonds based on financial time-series generative adversarial networks

被引:0
|
作者
Xiaoyu Tan
Zili Zhang
Xuejun Zhao
Shuyi Wang
机构
[1] Peking University,Guanghua School of Management
[2] Harvest Fund Management,Department of Mathematics
[3] Zhejiang University,undefined
来源
Financial Innovation | / 8卷
关键词
Convertible bonds; Generative adversarial network; Time-series simulation; Pricing; Investment strategy; Artificial intelligence; G1; G12; C5; C6; C63;
D O I
暂无
中图分类号
学科分类号
摘要
Convertible bonds are an important segment of the corporate bond market, however, as hybrid instruments, convertible bonds are difficult to value because they depend on variables related to the underlying stock, the fixed-income part, and the interaction between these components. Besides, embedded options, such as conversion, call, and put provisions are often restricted to certain periods, may vary over time, and are subject to additional path-dependent features of the state variables. Moreover, the most challenging problem in convertible bond valuation is the underlying stock return process modeling as it retains various complex statistical properties. In this paper, we propose DeepPricing, a novel data-driven convertible bonds pricing model, which is inspired by the recent success of generative adversarial networks (GAN), to address the above challenges. The method introduces a new financial time-series generative adversarial networks (FinGAN), which is able to reproduce risk-neutral stock return process that retains the unique statistical properties such as the fat-tailed distributions, the long-range dependence, and the asymmetry structure etc., and then transit to its risk-neutral distribution. Thus it is more flexible and accurate to capture the dynamics of the underlying stock return process and keep the rich set of real-world convertible bond specifications compared with previous model-driven models. The experiments on the Chinese convertible bond market demonstrate the effectiveness of DeepPricing model. Compared with the convertible bond market prices, our model has a better convertible bonds pricing performance than both model-driven models, i.e. Black-Scholes, the constant elasticity of variance, GARCH, and the state-of-the-art GAN-based models, i.e. FinGAN-MLP, FinGAN-LSTM. Moreover, our model has a better fitting capacity for higher-volatility convertible bonds and the overall convertible bond market implied volatility smirk, especially for equity-liked convertible bonds, convertible bonds trading in the bull market, and out-of-the-money convertible bonds. Furthermore, the Long-Short and Long-Only investment strategies based on our model earn a significant annualized return with 41.16% and 31.06%, respectively, for the equally-weighted portfolio during the sample period.
引用
收藏
相关论文
共 50 条
  • [21] Adversarial Examples Detection for XSS Attacks Based on Generative Adversarial Networks
    Zhang, Xueqin
    Zhou, Yue
    Pei, Songwen
    Zhuge, Jingjing
    Chen, Jiahao
    IEEE ACCESS, 2020, 8 (08): : 10989 - 10996
  • [22] Pricing Chinese Convertible Bonds with Learning-Based Monte Carlo Simulation Model
    Zhu, Jiangshan
    Wen, Conghua
    Li, Rong
    AXIOMS, 2024, 13 (04)
  • [23] Pricing convertible bonds based on a multi-stage compound-option model
    Gong, Pu
    He, Zhiwei
    Zhu, Song-Ping
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 366 (01) : 449 - 462
  • [24] Defending Against Adversarial Attacks on Time-series with Selective Classification
    Kuehne, Joana
    Guehmann, Clemens
    2022 PROGNOSTICS AND HEALTH MANAGEMENT CONFERENCE, PHM-LONDON 2022, 2022, : 169 - 175
  • [25] SINGING VOICE SYNTHESIS BASED ON GENERATIVE ADVERSARIAL NETWORKS
    Hono, Yukiya
    Hashimoto, Kei
    Oura, Keiichiro
    Nankaku, Yoshihiko
    Tokuda, Keiichi
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 6955 - 6959
  • [26] An image translation algorithm based on Generative Adversarial Networks
    Chen, Ruiying
    Liu, Long
    Luo, Zhuo
    2021 3RD INTERNATIONAL CONFERENCE ON MACHINE LEARNING, BIG DATA AND BUSINESS INTELLIGENCE (MLBDBI 2021), 2021, : 369 - 373
  • [27] Time-Frequency Domain Seismic Signal Denoising Based on Generative Adversarial Networks
    Wei, Ming
    Sun, Xinlei
    Zong, Jianye
    APPLIED SCIENCES-BASEL, 2024, 14 (11):
  • [28] Generative Adversarial Networks based on optimal transport: a survey
    Kamsu-Foguem, Bernard
    Msouobu Gueuwou, Shester Landry
    Kounta, Cheick Abdoul Kadir A.
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (07) : 6723 - 6773
  • [29] Image Creation Based on Transformer and Generative Adversarial Networks
    Liu, Hangyu
    Liu, Qicheng
    IEEE ACCESS, 2022, 10 : 108296 - 108306
  • [30] Time series forecasting for multidimensional telemetry data based on Generative Adversarial Network in a Digital Twin
    de Almeida Neto, Joao Carmo
    de Araujo, Leandro Santiago
    Filho, Leopoldo Andre Dutra Lusquino
    de Farias, Claudio Miceli
    JOURNAL OF COMPUTATIONAL SCIENCE, 2025, 88