The commutator of the Kato square root for second order elliptic operators on ℝn

被引:0
作者
Yan Ping Chen
Yong Ding
Steve Hofmann
机构
[1] University of Science and Technology Beijing,Department of Applied Mathematics, School of Mathematics and Physics
[2] Beijing Normal University,School of Mathematical Sciences
[3] Laboratory of Mathematics and Complex Systems (BNU),Department of Mathematics
[4] Ministry of Education,undefined
[5] University of Missouri,undefined
来源
Acta Mathematica Sinica, English Series | 2016年 / 32卷
关键词
Commutator; Kato square root; Lipschitz function; elliptic operators; 42B20; 42B25; 47F05; 47B44; 35J15; 35J25;
D O I
暂无
中图分类号
学科分类号
摘要
Let L = −div(A∇) be a second order divergence form elliptic operator, and A be an accretive, n×n matrix with bounded measurable complex coefficients in ℝn. We obtain the Lp bounds for the commutator generated by the Kato square root L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt L $$\end{document} and a Lipschitz function, which recovers a previous result of Calderón, by a different method. In this work, we develop a new theory for the commutators associated to elliptic operators with Lipschitz function. The theory of the commutator with Lipschitz function is distinguished from the analogous elliptic operator theory.
引用
收藏
页码:1121 / 1144
页数:23
相关论文
共 69 条
[1]  
Alvarez J.(1993)Weighted estimates for commutators of linear operators Studia Math. 104 195-209
[2]  
Bagby R.(2011)Analyticity of layer potentials and Adv. Math. 226 4533-4606
[3]  
Kurtz D.(1967) solvability of boundary value problems for divergence form eilliptic equations with complex Bull. Amer. Math. Soc. 73 890-896
[4]  
Alfonseca M.(2004) coefficients Put. Mat. 48 159-166
[5]  
Auscher P.(1996)Bounds for the fundamental solutions of a parabolic equation Colloq. Math. 71 87-95
[6]  
Axelsson A.(2006)On J. Funct. Anal. 241 703-746
[7]  
Aronson D.(2007) estimates for square roots of second order elliptic operators on R Adv. Math. 212 225-276
[8]  
Auscher P.(1998)Absence de principe du maximum pour certaines quations paraboliques complexes J. Funct. Anal. 152 22-73
[9]  
Auscher P.(2001)Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part III: Harmonic analysis of elliptic operators Acta Math. 187 161-190
[10]  
Coulhon T.(2002)Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I: General operator theory and weights Ann. of Math. 156 633-654